
Ranger Environment Documentation

Drew Dolgert

May 18, 2010

Contents

1 Introduction 2
1.1 Ranger Hardware . 2

2 Connect 3
2.1 Login Nodes . 3
2.2 Exercise: Use SSH to Connect . 3

2.2.1 SSH from Linux or Mac . 3
2.2.2 SSH from Windows . 3

2.3 Starting: Read Examples of Sessions . 4
2.4 Further Exercise: Using X-Windows to Connect . 5

2.4.1 Opening a Connection From Mac . 5
2.4.2 Opening a Connection From Linux . 6
2.4.3 Opening a Connection From Windows . 6

2.5 Exercise: Connect with VNC . 9
2.6 Further Exercise: Choose Your Shell . 9
2.7 Advanced: Make Login Faster . 10

2.7.1 Making Shortcuts on Windows . 10
2.7.2 Setup SSH Keys for No Password Login . 10

3 Using Module 10
3.1 About the Module Command . 10
3.2 Discussion Exercise: Learn Modules . 11
3.3 Modules List . 11
3.4 Exercise: Compilation with Modules . 15
3.5 Further Exercise: Module Dependencies . 15

4 Running in Batch 17
4.1 Text Editors . 17

4.1.1 VI Cheat Sheet . 17
4.2 Constructing a Batch File . 17
4.3 Queues . 18
4.4 Charges . 18
4.5 Monitor a Job . 19
4.6 Exercise: Run in Batch . 19
4.7 Discussion: Why the Long Queue? . 20
4.8 Further Exercise: Using Scheduler-Defined Variables 20

5 File Management 20
5.1 Filesystems on Ranger . 20

1

5.2 Tape Archive . 21
5.3 File Transfer with BBCP . 21
5.4 File Transfer with GridFTP . 21
5.5 Exercise: Retrieve Files with Secure Copy . 22

5.5.1 From Linux or Mac . 22
5.5.2 From Windows . 22

5.6 Further Exercise: File Transfer Competition . 23
5.7 Discussion: Transfer Techniques . 23

Contents:

1 Introduction

This document accompanies a talk introducing the working environment on the Ranger cluster
at the Texas Advanced Computing Center. The exercises inside are enough for someone already
familiar with the Linux command line to submit jobs to the Ranger cluster. There is also some
reference information, mostly a convenient copy of the Ranger user guide.

Learning to use the Linux command line for the first time is significantly more difficult than
learning to submit simple jobs to Ranger. Finding a separate guide on C Shell will greatly increase
your comfort.

References:

• Ranger User Guide - http://services.tacc.utexas.edu/index.php/ranger-user-guide

• Beginning Unix - http://info.ee.surrey.ac.uk/Teaching/Unix

1.1 Ranger Hardware

Each node on Ranger has four processors of four cores each. It’s a 64-bit AMD Barcelona chipset
at 2.3 GHz. With 9.2 GFlops/core, there are 36.8G Flops/chip, or 147.2 GFlops/node.

There are 3,936 nodes, which makes 62976 cores. Peak performance is 579 TFLOPS.

http://services.tacc.utexas.edu/index.php/ranger-user-guide
http://info.ee.surrey.ac.uk/Teaching/Unix

Check out the Ranger User Guide for more.

2 Connect

2.1 Login Nodes

You can connect to any of Ranger’s login nodes using Secure Shell, or SSH.

Ranger Login Address Usage
ranger.tacc.utexas.edu Puts you on one of the main login nodes.
tg-login.ranger.teragrid.org The same login nodes, through a TeraGrid alias.
login4.ranger.tacc.utexas.edu Chooses a specific login node.

The login nodes share a filesystem, so there is rarely a reason to return to the same node unless
you are using a VNC connection.

Each node is a 16-core Sun Linux system. You can edit, compile, and manage data on these
systems, but they aren’t a good place to run any code because they are shared among many
users. If you want to run code quickly, use the development queue.

2.2 Exercise: Use SSH to Connect

Goal: Connect to the login computer where we will work.

Skip to the section for either Mac, Linux, or Windows, depending on what kind of computer you
are using.

2.2.1 SSH from Linux or Mac

Secure Shell (SSH) is already installed on almost all Linux and Mac OS X systems. Telnet is no
longer used because SSH is more secure.

Open a terminal window by right-clicking on the desktop. Type the part that follows the dollar
sign:

$ ssh username@ranger.tacc.utexas.edu

The Ranger login node will respond with its status and the status of your account.

2.2.2 SSH from Windows

If you are working on a lab computer, skip the part about installation. Putty is installed on lab
computers.

Installation of Secure Shell

Telnet is disabled for security reasons, but Secure Shell (ssh) clients work nicely as long
as they support the SSH2 protocol. A popular client for Windows is the free Putty client,
http://www.chiark.greenend.org.uk/~sgtatham/putty/. The simplest installation is to down-
load the Windows installer, called putty-0.60-installer.exe, and run it to install putty into your
Start menu.

http://www.chiark.greenend.org.uk/~sgtatham/putty/

Starting a Client Session

1. Start Putty from the Start Menu.

2. Type a host name, ranger.tacc.utexas.edu, where you see the red circle. and hit Enter.

The Ranger login node will respond with its status and the status of your account.

2.3 Starting: Read Examples of Sessions

Goal: Familiarize with general command line use.

The Linux command line may look like an unfair game because there is no indication what to
type. The great news is that there are just a few commands that account for almost everything
you might want to do. In this exercise, just read transcripts to see how work is done.

Following are transcripts of Csh sessions at a command line. The hash, #, is a comment charac-
ter. The part you would type, but which you are not going to type right now, is after the dollar
sign. Any responses from Csh follow.

Create a New Workspace

Comments like this start with hash marks.
First, where am I?
$ pwd
/home/ajd27
Make a directory called intro.
$ mkdir intro
Check that the directories were made
$ ls
bin course intro
Move into intro.
$ cd intro
Run a command from another user’s directory
$ ~ajd27/bin/lu.S
NAS Parallel Benchmarks (NPB3.2-SER) - LU Benchmark
Size: 12x 12x 12

Iterations: 50
...
Copy that command to your own bin directory
$ cp ~ajd27/bin/lu.S ~/bin
See that it worked by listing the bin subdirectory of the parent (..) directory.
$ ls ../bin
farm lu.A lu.C lu.omp.B lu.omp.S lu.S
htop lu.B lu.omp.A lu.omp.C lu.omp.W lu.W
Save the command results to a file.
~/bin/lu.S > s0.txt
Check that you got the file and see its size in bytes.
$ ls -la
total 3428
drwxr-xr-x 5 ajd27 Domain Users 4096 Apr 20 17:05 .
drwxrwxrwx 35 ajd27 Domain Users 4096 Apr 14 15:17 ..
-rw-r--r-- 1 ajd27 Domain Users 1932 Apr 20 17:05 s0.txt
Read the file carefully, using a text reader called less.
In less: ’b’ for back. ’q’ to quit. ’/’ lets you enter a search string.
less s0.txt

2.4 Further Exercise: Using X-Windows to Connect

Goal: Use the mouse and menus with remote applications.

X-Windows can be sluggish over long distances. This section shows how to start X-Windows,
and you can make it faster later by increasing the compression level on your SSH connection.

Skip to the section for either Mac, Linux, or Windows, depending on what kind of computer you
are using.

2.4.1 Opening a Connection From Mac

If you are on a Mac, the big question is whether you have X11 installed. Navigate in the Finder
to the Applications folder and Utilities sub-folder. Do you see an application here called X11, as
shown in this picture?

If not, then you need your installation disc. X11 is in the Applications package, and the installer
is in the Optional Installs folder.

If you do have X11 installed, then first open a terminal window as shown below. Then follow
directions in Opening a Connection From Linux.

Navigate in the Finder to the Applications folder and Utilities sub-folder. Double-click on the
Terminal application to see a Bash command-line.

Continue with the next section, Opening a Connection From Linux.

2.4.2 Opening a Connection From Linux

In order to use X-Windows applications on Ranger, you have to turn on X11 Forwarding when
you make an SSH connection. This is as simple as adding -X to the SSH command:

$ ssh -X username@ranger.tacc.utexas.edu

Now that you are at a prompt at the login node, open an X-Windows application. The dollar sign
is called the prompt. Type the part that follows it:

$ xclock

You should see it appear in the corner of your screen if X-Windows is working.

If ever you see a message that “trusted X11 forwarding has failed,” connect again with -Y instead
of -X.

2.4.3 Opening a Connection From Windows

If you are working on a lab computer, skip the part about installation. Putty and Exceed (not
Xming) are installed on lab computers.

Installation of X-Windows

You will need to install an X-Windows server on your Windows machine. Common choices include
Xming (free), Cygwin/X (free), XFree86 (free), and Exceed.

Xming, available at http://www.straightrunning.com/XmingNotes/, is open source, with an
available shareware version that has improved graphics. There are two pieces to download.

Figure 1: Download and install both Xming-mesa and Xming-fonts.

• Xming-mesa (public domain release). There are two links together, one for Xming, one for
Xming-mesa. Either will work for this tutorial, but Xming-mesa has some newer features
that might come in handy some time.

• Xming-fonts (public domain release) If you purchase the website release of Xming, remem-
ber to install the Xming-fonts, as well.

Starting a Client Session

1. Before you connect to the login node, start the X-Windows server on your machine. In the
Start menu, either double-click the Xming icon. The application will briefly appear, then
disappear into the background, waiting for windows to show.

2. Start Putty.

3. Type a host name, ranger.tacc.utexas.edu, where you see the red circle.

http://www.straightrunning.com/XmingNotes/

4. Open the SSH menu, in orange on the left of the picture above. Choose X11 settings, shown
on the left below, to find the button to “Enable X11 forwarding.”

1. Now use the menu on the left to navigate back to the Session screen. Enter “ranger” under
Saved Sessions, and click the Save button. You can use this short cut the next time you
connect.

2. Click Open, and it will connect to the head node.

Now that you are at a prompt at the login node, open an X-Windows application. The dollar sign
is called the prompt. Type the part that follows it:

$ xclock

You should see it appear in the corner of your screen if X-Windows is working.

2.5 Exercise: Connect with VNC

VNC is a protocol that gives you a shows you a complete desktop, as though Ranger’s login node
were your a local computer. The great advantage of VNC is that it can be fast enough to do remote
visualization because it transfers only mouse information and bitmap images of the desktop.

Like SSH and X-Windows, a VNC session requires a client and a server. In this case, you have to
start a server manually on the Ranger login node. That server will define a screen to which you
can connect the VNC client, which is installed on your local computer. Each VNC server listens
on a TCP/IP port designated by its screen number, so screen 1 listens at port 5901, screen 27 at
port 5927.

There are many good VNC clients. On Windows and the Mac, try RealVNC or TightVNC. On
Linux, try vinagre or vncviewer.

Login to Ranger. First set your vnc password, which you will need when your client connects to
the server. Then start the server:

$ vncpasswd
$ vncserver
New ’login3.ranger.tacc.utexas.edu:1 (train200)’ desktop is
login3.ranger.tacc.utexas.edu:1
Starting applications specified in /share/home/0002/train200/.vnc/xstartup
Log file is /share/home/0002/train200/.vnc/login3.ranger.tacc.utexas.edu:1.log

The message above indicates that this VNC session is on screen 1 of login3. We can connect to
that from our local VNC client using the address login3.ranger.tacc.utexas.edu:1.

When you are done with the session, be sure to kill the VNC server with:

% vncserver -kill :1
Killing Xvnc process ID 11406

Note that :1 represents screen 1.

It is possible to tunnel VNC through Secure Shell for a safer connection. If you are using
TightVNC over long distances, you can greatly speed the connection by increasing compres-
sion. Another trick is to offer your VNC server address and password to a colleague in order to
share a display.

2.6 Further Exercise: Choose Your Shell

The default shell is /bin/csh. If you prefer another shell, now is a good time to change it. List
available shells with:

$ chsh -l

and then change your shell, for instance to tcsh, with:

$ chsh /bin/tcsh

Every shell reads configuration files on login. The two main types of shells, the Csh fam-
ily and Bash family, are configured on Ranger so that your personal configurations belong in
$HOME/.cshrc_user or $HOME/.login_user, respectively.

2.7 Advanced: Make Login Faster

There are two things you can do to make it easier to login to ranger. One is to make a shortcut,
or alias, to the login node. The other is to create SSH keys that will allow you to login to the node
without typing a password.

2.7.1 Making Shortcuts on Windows

Goal: Open SSH terminal window with a single click.

If you are working on your laptop, make a shortcut or alias to login to ranger.tacc.utexas.edu.

For Windows and Putty, first create a saved session. When you first open Putty, it gives you a
list of “saved sessions.” Enter a name in the box above that list, and click the save button. Then
make a shortcut with the -load option, where ranger is the whatever you called your session:

C:\util\putty.exe -load ranger

2.7.2 Setup SSH Keys for No Password Login

Goal: Make login not require typing a password.

This can take a few minutes if you have not done it before.

Start a key agent on your local computer which then logs in for you. You have to type your
pass phrase once when you start your local computer. There is an excellent tutorial already at
http://www.mtu.net/~engstrom/ssh-agent.php which covers Linux, the Mac, and Windows.

3 Using Module

Goal: Compile a parallel application on Ranger.

3.1 About the Module Command

The module command changes variables in your shell in order to choose which applications you
use. For instance, Ranger has about twenty different versions of MPI because there are MPI
builds for two compilers, three versions of MPI, and for past and development builds.

To load or unload a module, the module command changes environment variables the shell uses
to choose what it runs.

• $PATH - list of directories where executables are found.

• $MANPATH - list of locations to find help files.

http://www.mtu.net/~engstrom/ssh-agent.php

• $LD_LIBRARY_PATH - list of directories where applications can find shared libraries.

Each loaded module may define a new set of environment variables. For instance, loading the
Intel Math Kernel Libaries (MKL) defines variables you can use in a makefile.

• $TACC_MKL_DIR - The base directory of the MKL installation.

• $TACC_MKL_DOC - Location of documentation.

• $TACC_MKL_LIB - Library directory.

• $TACC_MKL_INC - Include directory for headers.

The module command tells you about possible conflicts. For instance, you will have the Intel
compilers loaded when you start. If you add the PGI compilers, you will see a message that
Intel is already loaded. Heed that advice, and delete the Intel compilers when you add the PGI
compiler.

The basic module commands are

• module avail - List available modules

• module avail string - Search for the module “string”.

• module list - Show currently-loaded modules.

• module add - Add a module to the environment.

• module del - Remove a module from the current environment.

• module help string - Get help on a module named “string”.

• module purge; module load TACC - Return to original state.

Some versions of module require you to load them in a particular order. The version installed
(and developed) at TACC does not.

3.2 Discussion Exercise: Learn Modules

Goal: Find out what is installed.

Scan the list of modules in the next section for ones you recognize and think about the following
questions, then discuss with the person beside you.

1. How many do you recognize as free software and which cost money?

2. Which scientific disciplines are well-represented?

3. How do you think applications and libraries are chosen?

If you need for work an application not already installed, you will be able to install it in your
home directory.

3.3 Modules List

This is a partial list of modules. Some entries that appear more than once on Ranger are here
only in one section.

• /opt/apps/pgi7_2/mvapich1_1_0_1/modulefiles

– amber - Molecular dynamics of proteins and nucleic acids

– arpack - Fortran subroutines to solve large scale eigenvalue problems.

http://ambermd.org/
http://www.caam.rice.edu/software/ARPACK/

– charm++ - Object-oriented language in C++ with adaptive MPI (NAMD, cosmology,
QCD).

– espresso - electronic-structure calculations and materials modeling at the nanoscale.

– fftw2 - A fast, free C FFT library; includes real-complex, multidimensional, and parallel
transforms.

– fftw3 - A fast, free C FFT library; includes real-complex, multidimensional, and parallel
transforms.

– gamess - ab inition quantum chemistry.

– gromacs - molecular dynamics for biomolecular systems.

– gulp - General utility lattice program for 3D periodic solids, gas phase clusters, and
more.

– hypre - library for solving large, sparse linear systems of equations

– ipm - integrated performance monitoring.

– kojak - performance-analysis tool for parallel applications supporting the programming
models MPI, OpenMP, SHMEM, and combinations thereof

– mpiP - lightweight profiling library for MPI applications.

– pdtoolkit - Program database toolkit for analyzing source code.

– petsc - data structures and routines for the scalable (parallel) solution of scientific
applications modeled by partial differential equations.

– phdf5 - Parallel data model, library, and file format.

– plapack - Parallel linear algebra matrix manipulations.

– pmetis - parallel graph partitioning.

– pnetcdf - parallel interface, library, and format for data.

– scalapack - linear algebra routines using MPI.

– scalasca - open-source analysis of parallel applications.

– slepc - Scalable library for eigenvalue problems.

– sprng - scalable parallel psuedo random number generation.

– tao - toolkit for advanced optimization.

– trilinos - algorithms for large-scale, complex multi-physics engineering and scientific
problems.

• /opt/apps/pgi7_2/modulefiles

– acml - AMD Core Math Library, lapack.

– autodoc - docking tools for small molecule binding to known 3D structure.

– glpk - GNU linear programming kit.

– gotoblas - Hand-tuned Basic linear algebra subroutines.

– hdf5 - data model, library, and file format.

– hecura - MPI-2 implementation for Infiniband

– mvapich - MPI-1 implementation for InfiniBand

http://charm.cs.uiuc.edu/
http://www.quantum-espresso.org/
http://www.fftw.org/
http://www.fftw.org/
http://www.msg.ameslab.gov/gamess/
http://www.gromacs.org/
http://www.ivec.org/gulp/
http://acts.nersc.gov/hypre/
http://ipm-hpc.sourceforge.net/overview.html
http://icl.cs.utk.edu/kojak/
http://mpip.sourceforge.net/
http://www.cs.uoregon.edu/research/pdt/home.php
http://www.mcs.anl.gov/petsc/
http://www.hdfgroup.org/HDF5/PHDF5/
http://cs.utexas.edu/users/plapack
http://sc.fsu.edu/~burkardt/c_src/pmetis/pmetis.html
http://www.unidata.ucar.edu/software/netcdf/
http://www.netlib.org/scalapack/
http://www.scalasca.org/
http://www.grycap.upv.es/slepc/
http://sprng.cs.fsu.edu/
http://www.mcs.anl.gov/tao
http://trilinos.sandia.gov/
http://developer.amd.com/cpu/libraries/acml/pages/default.aspx
http://autodock.scripps.edu/
http://autodock.scripps.edu/
http://www.tacc.utexas.edu/tacc-projects/
http://www.hdfgroup.org/HDF5/PHDF5/
http://mvapich.cse.ohio-state.edu/overview/mvapich2/
http://mvapich.cse.ohio-state.edu/overview/mvapich/

– nco - Programs for manipulating and analyzing NetCDF files.

– netcdf - interface, library, and format for data.

– openmpi - MPI-2 implementation for Infiniband

• /opt/apps/teragrid/modulefiles

– ctssv4 - Coordinated TeraGrid software and services.

– globus-4.0 - Toolkit for building grids.

– teragrid - presumably TeraGrid tools.

– apache-ant - A Java build tool.

– condor-g - Grid version of Condor scheduler.

– condor - Methods for high throughput computing.

– gridshell - login shell for grid computing.

– gsissh - SSH for TeraGrid.

– gx-map - Utilities to maintain grid security directory.

– koomie - Internal for testing software builds.

– mycluster - Virtual clusters on demand.

– pacman - Pacman lets you define, install, configure and setup software.

– srb-client - Storage request broker client.

– tg-policy - Displays TACC teragrid policy.

– tginfo - TeraGrid Information Service Discovery Client

– tgproxy - Helps you work with TeraGrid credentials.

– tgresid - TeraGrid resource identification

– tgusage - query TeraGrid allocations.

– uberftp - Grid-enabled FTP client.

• /opt/apps/modulefiles

– R - functional language for statistical computing.

– autotools - configuration of software.

– beta - unknown

– binutils-amd - Tools to work with binaries.

– cmake - cross-platform, open-source build system.

– ddt - large-scale parallel debugger

– gcc - GNU compiler collection.

– git - version control system

– gmake - GNU make program.

– gmp - Gnu Multiple Precision Library

– gnuplot - 2D and 3D plotting.

– gsl - GNU scientific library.

http://nco.sourceforge.net/
http://www.unidata.ucar.edu/software/netcdf/
http://www-open-mpi.org/
http://www.teragridforum.org/mediawiki/index.php?title=CTSS_-_Coordinated_TeraGrid_Software_and_Services
http://www.globus.org/toolkit/
http://ant.apache.org/
http://www.cs.wisc.edu/condor/condorg/
http://www.cs.wisc.edu/condor/
http://grid.ncsa.illinois.edu/ssh/
http://users.sdsc.edu/~gxmap/
http://sites.google.com/site/ewalker544/research-2/mycluster
http://atlas.bu.edu/~youssef/pacman/htmls/
http://www.sdsc.edu/srb/index.php/Main_Page
http://info.teragrid.org/tginfo/
http://www.teragridforum.org/mediawiki/index.php?title=CTSS_4_Remote_Login_Capability_Implementation
http://www.teragridforum.org/mediawiki/index.php?title=Tgusage
http://dims.ncsa.illinois.edu/set/uberftp/
http://www.r-project.org/
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/binutils/
http://www.cmake.org/
http://www.allinea.com/?page=48
http://gcc.gnu.org/
http://git-scm.com/
http://www.gnu.org/software/make/
http://gmplib.org/
http://www.gnuplot.info/
http://www.gnu.org/software/gsl/

– gzip - Open-source compression.

– intel - Intel compilers

– irods - Integrated Rule-oriented Data System.

– launcher - TACC Parametric Job Launcher

– lua - Programming language.

– mkl - Intel Math Kernel Library.

– mpfr - C library for multiple-precision floating point.

– mysql - Open-source database.

– ncl_ncarg - NCL/NCAR graphics library

– numpy - Tools for numerical computing on Python.

– papi - Interface for to use hardware performance counters.

– perfexpert - Peformance evaluation tool developed at TACC.

– pgi - Portland Group compilers for C and Fortran.

– plplot - Library to create scientific plots.

– postgres - Open Source database.

– python - Scripting language.

– star-ccm- CAD preparation, meshing, and model setup.

– subversion - version control system.

– sun - Loads the Sun compiler environment.

– tar - Archive creation and manipulation.

– vis - Makes all of the visualization modules visible.

– zlib - compression library.

• /opt/modulefiles

– java - programming language.

• /opt/apps/vis/modulefiles

– VTSSV3 - TeraGrid visualization tools?

– amira - Visualization stressing life sciences.

– blender - Open Source 3D creation suite.

– chromium - scalable rendering for clusters of workstations.

– cuda-sdk - Software development kit for GPU programming.

– ensight - The “extreme” visualization post-processor.

– glew - OpenGL extension wrangler library.

– glui - OpenGL User Interface library.

– glut - OpenGL utility kit.

– gmt - 60 unix tools to manuplate (x,y) and (x,y,z) data sets.

– idl - Visualization programming language.

http://www.gzip.org/
http://software.intel.com/en-us/intel-compilers/
http://www.irods.org/
http://www.tacc.utexas.edu/resources/software/
http://www.lua.org/
http://software.intel.com/en-us/intel-mkl/
http://www.mpfr.org/
http://www.mysql.com/
http://www.ncl.ucar.edu/
http://numpy.scipy.org/
http://icl.cs.utk.edu/papi/
http://www.tacc.utexas.edu/perfexpert/
http://www.pgroup.com/
http://plplot.sourceforge.net/
http://www.postgresql.org/
http://www.python.org/
http://www.cd-adapco.com/products/STAR-CCM_plus/
http://subversion.tigris.org/
http://www.zlib.net/
http://www.java.com/
http://www.amira.com/
http://www.blender.org/
https://visualization.hpc.mil/wiki/Chromium
http://www.nvidia.com/object/cuda_home_new.html
http://www.ensight.com/
http://glew.sourceforge.net/
http://www.cs.unc.edu/~rademach/glui/
http://www.opengl.org/resources/libraries/glut/
http://gmt.soest.hawaii.edu/
http://www.ittvis.com/ProductServices/IDL.aspx

– imagemagick - Convert, edit, compose images.

– mesa - OpenGL offscreen rendering.

– mplayer - Movie player.

– netpbm - command-line utilities for image manipulation.

– paraview - Open source scientific visualization.

– qt - Application windowing toolkit.

– sdl - Simple DirectMedia Layer for graphics and audio.

– silo - file format used by VisIt.

– vapor - Visualization package for ocean, atmosphere, solar.

– visit - Open source, 3D visualization tool.

– vtk - Visualization library, open-source, scriptable from C++, perl, python, java, tcl.

3.4 Exercise: Compilation with Modules

Goal: Use modules to choose tools.

Imagine you brought your code to this computer. You know your code needs the following kinds
of libraries.

• C Compiler - Three compilers are installed on this system, two of which are listed by the
module command.

• BLAS Library - Basic Linear Algebra Subroutines, which our program will use to invert large
matrices.

• MPI - The message passing interface, which our program will use to run on many cores at
the same time.

We have, in this case, the HPL benchmarks, which are sometimes used to test supercomputers.

1. Use module to list what is currently loaded. (Section About the Module Command might be
helpful here.)

2. Add intel, for the Intel compilers, and mkl, which are the Intel Math Kernel Libraries. It
may hint you need to unload another module. Take the hint.

3. Copy code with cd && tar zxf ~train400/envi.tgz.

4. Make that code with cd hpl-2.0; make arch=icc_mkl. This may take a few minutes. If
there are problems, they would indicate you don’t have the modules loaded.

3.5 Further Exercise: Module Dependencies

First, start fresh by purging all modules. (You can always get the original set back by loading the
TACC package.) Then take a look at what is loaded:

$ module purge
$ module avail

This list includes the intel and pgi compilers. Load the intel compilers and look to see how
your choice of modules has changed:

http://www.imagemagick.org/
http://www.mesa3d.org/
http://www.mplayerhq.hu/
http://netpbm.sourceforge.net/
http://www.paraview.org/
http://qt.nokia.com/products
http://www.libsdl.org/
http://www.e-science.le.ac.uk/format/silo.shtml
http://www.vapor.ucar.edu/
https://wci.llnl.gov/codes/visit/
http://www.vtk.org/

$ module add intel
$ module avail

Do you see that some of the section headers now refer to intel? These options were not present
until you loaded the compiler because these libraries and applications depend on which compiler
you load. The last major choice you would make is which version of MPI you will use. Load
mvapich:

$ module add mvapich
$ module avail

You will see that modules are listed in sections by module avail:

/opt/apps/intel10_1/mvapich1_1_0_1/modulefiles
/opt/apps/intel10_1/modulefiles
/opt/apps/teragrid/modulefiles
/opt/apps/modulefiles
/opt/modulefiles

The section headings are the names of files in /opt subdirectories where the applications are
installed. The first two sections are interesting because they involve your choices of compiler
and MPI library. See what happens if you switch to a different compiler:

$ module del intel
$ module add pgi

Now look at module avail again. The sections have changed:

/opt/apps/pgi7_2/mvapich1_1_0_1/modulefiles
/opt/apps/pgi7_2/modulefiles
/opt/apps/teragrid/modulefiles
/opt/apps/modulefiles
/opt/modulefiles

The good news is that when you switch from the Intel compilers to the PGI compilers the MPI
module, which depends on them, is automatically reloaded for you. You can see this by checking
the MPICH_HOME variable:

login4% env | grep -i MPI
MPICH_HOME=/opt/apps/intel10_1/mvapich/1.0.1
login4% module del intel
login4% module add pgi
Due to MODULEPATH changes the follow modules have been reloaded:
1) mvapich

login4% env | grep -i MPI
MPICH_HOME=/opt/apps/pgi7_2/mvapich/1.0.1

Most applications that depend on the compiler or MPI version are installed for all versions of the
compiler and MPI. A few are not, which can make finding them a challenge. For instance, if you
want to run lammps or nwchem, the module avail command will not find it, even with its search
function, unless you have already loaded the Intel compiler and MVAPICH. You have to ensure
intel and mvapich are loaded, then use module avail lammps to find it. If we started with pgi
loaded, we see:

login4% module avail lammps
login4% module swap pgi intel
Due to MODULEPATH changes the follow modules have been reloaded:
1) mvapich

login4% module avail lammps
---------------- /opt/apps/intel10_1/mvapich1_1_0_1/modulefiles ----------------
lammps/25Aug09 (default)

4 Running in Batch

4.1 Text Editors

There are several text editors available on Ranger.

• nano - Small and quick. Use Ctrl-o to save, Ctrl-x to quit.

• vi - Quick, powerful. You can get by in this with a cheat sheet below.

• emacs - Less quick, also powerful.

4.1.1 VI Cheat Sheet

Vi has two modes, insertion mode for editing and command mode for saving. The editor starts in
command mode.

In command mode,

• :w writes a file to disk

• :q quits

• :q! quits even if you didn’t save changes

• i puts you in insertion mode.

In insertion mode,

• Cursors and typing work as expected.

• Escape key returns to command mode.

Ctrl-c will not quit this program.

For more, ask the Google about Vi cheat sheets.

4.2 Constructing a Batch File

Ranger uses the Sun Grid Engine scheduler. Submit jobs with qsub:

$ qsub batch.sh

You can put arguments to qsub on the command line, but they usually go in the batch files as
comments at the start of the file where the scheduler searches for all lines that begin with #$.

http://www.google.com/search?q=vi+cheat+sheet

Argument Description
#$ -N The job name, available to the script as $JOB_NAME
#$ -cwd Start the job in the same current working directory.
#$ -o The name of the output file.
#$ -j y Join the stdout and stderr streams in the output file.
#$ -A Your account name, listed at login.
#$ -q Which queue to use, found in the Ranger User Guide.
#$ -pe The wayness of the job, as in 16way, and core count.
#$ -V Set job variables as though it were a child of this shell.
#$ -l Specify resources, such as h_rt=00:10:00 for run time.

For example, a job to run on 64 cores, which is 4 nodes, for 10 minutes might look like:

#$ -N ht3d-hyb
#$ -cwd
#$ -o $JOB_NAME.o$JOB_ID
#$ -j y
#$ -A 20100519HPC
#$ -q development
#$ -pe 16way 64
#$ -V
#$ -l h_rt=00:10:00
set -x
ibrun $HOME/bin/xhpl

The ibrun command at the bottom starts a job under MPI using settings from the -pe line. The
second argument on that line is the number of cores for your job. Given sixteen cores per node
on all Ranger nodes, the number of nodes is the number of cores divided by sixteen.

Wayness tells ibrun how many processes to start on each node you have requested. You might
request 1way if you have a distributed, multi-threaded code. You might try 15way or 14way if you
want to leave a free core to handle intensive I/O on a node.

The scheduler stores all stdout and stderr from your batch script when it executes on the head
node of the job. Those files are stored, by default, in the directory where you executed qsub,
unless you specify otherwise with the -o option.

4.3 Queues

The first place to learn about queues is the Ranger User Guide section called “Ranger Queue
Structure.” I’ll recopy that information here for convenience.

Queue Name Max Runtime Max Procs Purpose
normal 24 hours 4096 The standard place to submit.
long 48 hours 1024 Longer, smaller jobs.
large 24 hours 16384 Very large jobs.
development 2 hours 256 Quick test jobs.
serial 12 hours 16 Jobs which use only one node.
request – – Special requests.
vis 24 hours 32 For visualization on Spur cluster.

4.4 Charges

When you log on to Ranger, the splash screen shows what accounts you have and how many
service units (SUs) you have in your accounts. You can see that information at any time with by

http://services.tacc.utexas.edu/index.php/ranger-user-guide#Running_Code

executing:

$ /usr/local/etc/taccinfo

or by going to the TeraGrid User Portal.

A service unit, or SU, is defined as one core-hour on a TeraGrid Phase-1 DTF cluster on Tera-
Grid’s Getting Started. Ranger charges one SU per core-hour on all of its queues.

4.5 Monitor a Job

When you submit a job, the scheduler assigns it a state and changes that state over time. The
four basic states are

• Unscheduled - Likely a sign something is wrong.

• DepWait - This job is set to run after another finishes.

• Waiting - It’s in the queue and waiting for resources to become available.

• Running - As far as the scheduler is concerned, everything is working.

The main command for monitoring your own jobs is qstat.

qstat argument description
qstat Show status of only your jobs.
qstat -j <jobid> Show details about one job.
qstat -ext Extended job information.
qstat -r Resource requirements.

The showq command will show jobs from all users.

showq argument description
showq Show summary of jobs in queue.
showq -sfb +priority Sort by increasing priority.
showq -sfa -queuetime Sort by decresasing queue time.

The possible sorting arguments are priority, starttime, queuetime, wclimit, jobname, and
remaining.

To cancel a failing job, use qdel.

qdel argument description
qdel <jobid> Cancels a waiting or pending job.
qdel -f <jobid> Cancels a running job.

4.6 Exercise: Run in Batch

Goal: Monitor a job and evaluate its success.

You compiled code earlier. Now it’s time to run that code.

1. Go to the same directory as the HPL-2.0 binary with “cd ~/hpl-2.0/bin/icc_mkl”.

2. Compare the sample batch file, ranger.sh, with that of Section Constructing a Batch File.
You want your job to use 16 cores, and your account for this class is 20100519HPC. Edit it
so that it has the right account.

3. Submit batch.sh using the qsub command. Remember its job id.

http://portal.teragrid.org
https://www.teragrid.org/web/user-support/get_started_new_to_teragrid
https://www.teragrid.org/web/user-support/get_started_new_to_teragrid

4. Can you find detailed information on what directory it will run in using qstat? (Use Section
Monitor a Job.

5. Can you tell when it will run? Mostly, not, so can you tell how many jobs are waiting?

6. On what node did it run?

7. When the job finishes, do you see its output file in the same directory from which you
submitted the file?

4.7 Discussion: Why the Long Queue?

You can get a list of queues with qconf -sql and look at details of a particular queue with qconf
-sq queuename.

1. Look at the hostlist and user_lists of development, normal, and large queues. Why
make different host lists or user lists? What behavior are they trying to encourage?

2. Do any queues have higher or lower priority according to qconf? The qstat -g c command
shows how many slots each queue is permitted to use. What incentives are there to prefer
certain queues, and what are those incentives?

3. What are the consequences of a 24 hour max queue time?

4.8 Further Exercise: Using Scheduler-Defined Variables

The scheduler defines variables for the job to use when it runs on the node. The simplest are
$JOB_ID, which is the number the scheduler assigns to the job and $JOB_NAME, which is the
name you give with the -N switch.

You can see what variables are defined by submitting a script whose body contains the following:

env|sort>variables.txt

This will show many variables which begin with $PBS. Those that start with $PBS_O refer to the
state of the shell when you submitted the job. So try submitting a job and take a look.

5 File Management

Now you have run your job and begun to generate lots of data. Where do you put it? How do you
get it home?

5.1 Filesystems on Ranger

Ranger has three main filesystems, available from both login nodes and compute nodes.

Filesystem Total Size Per User Quota Shortcut Retention Policy
$HOME ~100 TB 6 GB cd Nightly backup
$WORK ~200 TB 350 GB cdw No backup
$SCRATCH ~800 TB 400 TB cds Purged every 10 days

These filesystems reside on 73 Sun x4500 I/O servers and 4 metadata servers, served by Lustre.
They are highly parallel and very fast.

You can query quota information about individual directories with the lfs command. For in-
stance, to see your quota on $WORK:

$ lfs quota -u $USER $WORK

Find your usage either from the login splash screen or with the disk usage command. This finds
the number of megabytes under $HOME:

$ du -sm $HOME
1316 /share/home/00692/train00

5.2 Tape Archive

There is a 1.7 PB tape archiver, called Ranch, attached to Ranger. It is available for you to use as
needed. To access it, use secure copy or the bbcp command to copy files to your directory under
the machine. The syntax for copying to your archive directory on Ranch is:

$ scp filename ${ARCHIVER}:${ARCHIVE}

For more on this, look at the Ranch User Guide.

5.3 File Transfer with BBCP

You could do this exercise on your own computer later. It requires an installation of BBCP on
the local machine.

BBCP is a program that functions much like secure copy, or SCP, except that it has several
enhancements to transfer files much more quickly. In order to use this to transfer files to or
from Ranger, you would have to install it on your local machine, and it seems to install best on
Linux or other Unixes. Darwin builds for Mac are possible, too.

Download the source code from http://www.slac.stanford.edu/~abh/bbcp/bbcp.tar.Z. To copy
a file to ranger, use it like scp:

[local]$ bbcp filename login3.ranger.tacc.utexas.edu:

More information is in the Ranger user guide, under High speed transfers.

5.4 File Transfer with GridFTP

You could do this exercise on your own computer later. It requires an installation of GridFTP on
the local machine.

GridFTP is a protocol designed to transfer files using grid credentials. With GridFTP, you can

• Login once with your TeraGrid credentials and transfer files many times without passwords.

• From one machine, execute a command that transfers files between two other machines.

• Encrypt files as they are sent for extra security.

• Transfer files quickly using many other features.

http://services.tacc.utexas.edu/index.php/ranch-user-guide
http://www.slac.stanford.edu/~abh/bbcp/bbcp.tar.Z
http://www.tacc.utexas.edu/services/userguides/ranger/

There are several applications that can do GridFTP, all described at
https://www.teragrid.org/web/user-support/gridftp. You would have to install one on
your local computer in order to exchange files with Ranger. Ranger’s gridftp address is
gridftp.ranger.tacc.utexas.edu.

5.5 Exercise: Retrieve Files with Secure Copy

This is a first experience with Secure Copy to show how easy it is to transfer files back and forth.
An alternative, also easy, method is to use Secure FTP, or SFTP. On Windows, try WinSCP. On
the Mac, try Fetch.

Find the Linux and Mac or Windows sections, as appropriate.

5.5.1 From Linux or Mac

1. Open a terminal window with a right-click on the desktop. You should now have two win-
dows open, one that is on the local machine and one that is logged into Ranger.

2. On Ranger, create a 1 GB file with cd && dd if=/dev/zero of=gig bs=1G count=1.

3. Do an ls to find out how large this file is.

4. On your local machine, copy that file from Ranger with scp. Put your username where the
example shows train2xx. The single period at the end represents the current directory on
the local drive as the place to store the retrieved file.

[local]$ scp train2xx@ranger.tacc.utexas.edu:gig .

About how long did that take? Now copy the file back.

[local]$ scp gig train2xx@ranger.tacc.utexas.edu:gig

That should transfer files from the local machine to the remote one.

5.5.2 From Windows

On Windows, you need to install a program called Pscp in order to transfer files with Secure
Copy. This program is part of the suite with Putty, the SSH client.

1. You already have one Putty window open and logged into Ranger. Now open a local com-
mand line by going to the Start Menu, looking under All Programs, Accessories, and then
open “Command Prompt”. In what directory is this command prompt?

2. Download pscp into the same directory as the local command prompt. Do this by right-
clicking on this link, http://tartarus.org/~simon/putty-snapshots/x86/pscp.exe, and
choosing “save as..”.

3. On Ranger, create a 1 GB file with cd && dd if=/dev/zero of=gig bs=1G count=1.

4. Do an ls to find out how large this file is.

5. Run pscp in the local command prompt.

[local]$ pscp train2xx@ranger.tacc.utexas.edu:gig .

About how long did that take? Now copy the file back.

https://www.teragrid.org/web/user-support/gridftp
http://tartarus.org/~simon/putty-snapshots/x86/pscp.exe

[local]$ pscp gig train2xx@ranger.tacc.utexas.edu:gig

That should transfer files from the local machine to the remote one.

5.6 Further Exercise: File Transfer Competition

There are two faster ways to transfer files, bbcp and gsiftp, but we can’t test them from any
of the lab computers because they require installation of other programs. If you have your own
machine, you might try this after class.

First, make a nice big file. On what filesystem would you make a large temporary file? Look
above to choose one, and we’ll call it “chosen_directory” below. Now create a file called gig and
see where it’s located:

$ cd chosen_directory
$ dd if=/dev/zero of=gig bs=1G count=1
$ pwd

Transfer that file with bbcp and compare with the time of scp:

[local]$ bbcp train2xx@login3.ranger.tacc.utexas.edu:/path/to/gig .
[local]$ scp train2xx@login3.ranger.tacc.utexas.edu:/path/to/gig .

If you have a TeraGrid account, you can try the gsiftp program. It has many possible parame-
ters. Try the timing of with these commonly-used options:

[local]$ grid-proxy-init
[local]$ globus-url-copy -stripe -tcp-bs 11M -vb \
gsiftp://gridftp.ranger.tacc.teragrid.org//path/to/gig file:///gig

For more information, look at the TeraGrid GridFTP page.

5.7 Discussion: Transfer Techniques

• Which transfer method is fastest?

• How long would it take to transfer a terabyte (a thousand gigabytes) with the fastest method?

• Do you know of faster ways to transfer data?

• How could you avoid transfer of data?

https://www.teragrid.org/web/user-support/gridftp

	Introduction
	Ranger Hardware

	Connect
	Login Nodes
	Exercise: Use SSH to Connect
	SSH from Linux or Mac
	SSH from Windows

	Starting: Read Examples of Sessions
	Further Exercise: Using X-Windows to Connect
	Opening a Connection From Mac
	Opening a Connection From Linux
	Opening a Connection From Windows

	Exercise: Connect with VNC
	Further Exercise: Choose Your Shell
	Advanced: Make Login Faster
	Making Shortcuts on Windows
	Setup SSH Keys for No Password Login

	Using Module
	About the Module Command
	Discussion Exercise: Learn Modules
	Modules List
	Exercise: Compilation with Modules
	Further Exercise: Module Dependencies

	Running in Batch
	Text Editors
	VI Cheat Sheet

	Constructing a Batch File
	Queues
	Charges
	Monitor a Job
	Exercise: Run in Batch
	Discussion: Why the Long Queue?
	Further Exercise: Using Scheduler-Defined Variables

	File Management
	Filesystems on Ranger
	Tape Archive
	File Transfer with BBCP
	File Transfer with GridFTP
	Exercise: Retrieve Files with Secure Copy
	From Linux or Mac
	From Windows

	Further Exercise: File Transfer Competition
	Discussion: Transfer Techniques

