so9 Cornell University
©)

15 Center for Advanced Computing

Lab: Hybrid Programming
and NUMA Control

Steve Lantz

Introduction to Parallel Computing
May 24, 2011

Based on materials developed by by Kent Milfeld at TACC

5% Cornell University
@E) Center for Advanced Computing

What You Will Learn

» How to use numactl in the execution of serial, threaded, and 4xN
hybrid (i.e., 4 MPI tasks, each with N threads) codes
* How to structure communications in a 2x16 hybrid code that involves
threaded MPI calls between 2 nodes
— MPI calls from serial region
— MPI calls from master thread in a parallel region
— MPI calls from all threads in a parallel region
* How to measure the performance of the above codes
* The performance implications of using numactl and threaded MPI
— Location of data is important in serial codes
— Initialization of data is important in threaded codes
— For less than 16-way, MPI executables need to be assigned to sockets

so9 Cornell University
©)

15 Center for Advanced Computing

Getting Started

» Untar the file numahybrid.tar
- cd~ (start in your home directory)
— tar xvf ~train100/labs/numahybrid.tar (extract files)
— c¢d numahybrid

Cornell University

Center for Advanced Computing

numactl_serial

» Run the memory intensive daxpy program on four different sockets
using local, interleave and off-socket-memory policies.

— Use the commands below to make the daxpy executable and run it with
numa control commands.

— See the job script and the table on the next page for the numa options.
— Run the job and report the times and relative performance.

* Procedure:
— cd numactl_serial (change directory to numactl_serial)
— module unload mvapich; module swap pgi intel; module load mvapich
— make
— qsubjob (submits job)

gore Cornell University
@)

15 Center for Advanced Computing

numactl_serial — Results

» From the job output fill in the table.

Command Time (secs) Rank the performance of
numact! -1 -C 0 local, interleave, and off-

socket-memory policies,

numactl -1 -C 1
from best to poorest

numactl -1 -C 2

1.
numactl -f -C3 2-)
numactl -i all -C 0 3_)

numactl -i all -C 1
numactl -i all -C 2
numactl -i all -C 3

numactl -m 3 -C 0

Cornell University

Center for Advanced Computing

numactl_alloc

» The daxpy algorithm is parallelized to run as 4 threads. It is run on 4
different sockets through the code statements:
ithread = OMP_GET THREAD NUM() *4
call £90_setaffinity(ithread)

— In master_alloc_daxpy, the a, b, and ¢ matrices are allocated
preferentially on the default socket for the master thread (0).

— Inthread_alloc_daxpy, sections of a, b, and c are allocated where the
threads are executing (cores 0,4,8,12 on sockets 0,1,2,3).

» Procedure:
— cd numactl_alloc (change directory to numactl_alloc)

— if you have done this already, don’t do it again:
module unload mvapich; module swap pgi intel; module load mvapich

— make (note, must link with -Inuma to obtain set_mempoalicy)
— qsubjob (submits job)

so9 Cornell University
©)

15 Center for Advanced Computing

numactl_alloc — Results

» From the job output fill in the table.

Command Time (secs) Rank the performance of
master_alloc_daxpy master-allocated memory
vs. thread-allocated, from
best to poorest

1)

2.)

thread_alloc_daxpy

Cornell University

Center for Advanced Computing

numactl_4x1, numactl_4x4

* Run the daxpy program as 4 tasks in a node (4x1) and 4 tasks with 4
threads in a node (4x4), following the instructions below.

— Use the commands below to make the daxpy executable and run it with
numa control commands.

— See the job script and the table on the next page for the numa options.
— Run the job and report the times and relative performance.
* Procedure:
— cd numactl_4x1 or numactl_4x4 (change directory as needed)
— if you have done this already, don’t do it again:
module unload mvapich; module swap pgi intel; module load mvapich
— make

— qsubjob (submits job)

so9 Cornell University
©)

15 Center for Advanced Computing

numactl_4x1, numactl_4x4 — Results

» From the job output fill in the tables.
Rank 4x1 performance

Command (4x1) Time (secs) from best to poorest
<no numactl> 1_)

numactl -| 2_)

numactl -i all 3_)

numactl tacc_affinity 4_)

Command (4x4) Time (secs) Rank 4x4 performance
<no numactl> 1_)

numactl -| 2_)

numactl -i all 3_)

numactl tacc_affinity 4_)

Cornell University

Center for Advanced Computing

What'’s the Explanation?

* This is a bandwidth-limited code, so the best results are achieved
when executions are distributed across all sockets

» For both 4x1 and 4x4 cases, the default kernel policy puts all tasks on
socket 0; tweaking the memory allocation doesn’t help much ®
» tacc_affinity spreads the tasks across sockets, which is 2-4x faster
— 4x1 case is 2-3x faster

— 4x4 case is 4x faster because the default affinity puts ALL threads on a
single socket

10

Cornell University

Center for Advanced Computing

What is tacc_affinity?

It's a script: /share/sge6.2/default/pe_scripts/tacc_affinity

#!/bin/bash
MODE="/share/sge6.2/default/pe_scripts/getmode.sh"
First determine "wayness" of PE

myway="echo $PE | sed s/way//

Determine local compute node rank number

if [x"$MODE" == "xmvapich2_ ssh"]; then

export MV2_USE_AFFINITY=0

export MV2_ENABLE_AFFINITY=0

my_ rank=$PMI_ID

elif [x"$MODE" == "xmvapichl_ssh"]; then

export VIADEV_USE_AFFINITY=0

export VIADEV_ENABLE AFFINITY=0

my_ rank=$MPIRUN_RANK

else

echo "TACC: Could not determine MPI stack. Exiting!"
exit 1

fi

local_rank=$(($my_rank % $myway))

11

Cornell University

Center for Advanced Computing

What is tacc_affinity? — Part 2

Based on "wayness" determine socket layout on local node
if less than 4-way, offset to skip socket 0
if [$myway -eq 1]; then
numnode="0,1,2,3"
if 2-way, set 1lst task on 0,1 and second on 2,3
elif [$myway -eq 2]; then
numnode="$((2 * $local_rank)),$((2 * $local_rank + 1))"
elif [$myway -1t 4]; then
numnode=$ (($local_rank + 1))
if 4-way to 12-way, spread processes equally on sockets
elif [$myway -1t 13]; then
numnode=$ (($local_rank / ($myway / 4)))
if 16-way, spread processes equally on sockets
elif [$myway -eq 16]; then
numnode=$ (($local_rank / ($myway / 4)))
Offset to not use 4 processes on socket 0
else
numnode=$ ((($local rank + 1) / 4))
£i
#echo "TACC: Running $my rank on socket $numnode"
exec /usr/bin/numactl -c $numnode -m $numnode $*

12

Cornell University

Center for Advanced Computing

Communications in Hybrid Codes

» The tmpi (threaded mpi) code illustrates different ways of doing point-
to-point and broadcast communications in a hybrid code. Using both
mvapich and openmpi, we will:

— check to make sure the code performs correctly
— measure the cost for sending a single large message in the serial region
— compare the cost for sending 16 small messages in the parallel region
* Procedure:
— cd threaded_mpi

— if you have done this already, don’t do it again:
module unload mvapich; module swap pgi intel; module load mvapich

— ./build.sh (this builds tmpi.mvapichl and tmpi.openmp)

13

Cornell University

Center for Advanced Computing

Hybrid Job Script

Script for 10 interactive minutes of 2 nodes (=32/16), 1 task per node (lway), 2 tasks total,
in the development queue. 16 threads (OMP_NUM_THREADS 16) are launched on each node.

#!/bin/tcsh

use bash shell

#$ -v inherit submission environment
#$ -cwd use submission directory

#$ -N threadedmpi jobname (threadedmpi)

#$ -j y stdout/err combined

#$ -o $JOB_NAME.o$JOB_ID
#$ -pe lway 32
#$ -q development
#$ -1 h_rt=00:10:00
#$ -A TACCacct
set echo

output name jobname.ojobid

1 task/node, 32 cores total
queue name !! use normal
request 10 minutes
Accounting: training project
echo cmds, use "set -x" in sh

HH o o o 3

setenv MY NSLOTS 2
setenv OMP_NUM THREADS 16
ibrun ./tmpi < input

If # of tasks is not equal to
wayness*total_cores/16, set
value here.

14

Cornell University

Center for Advanced Computing

Submit the Batch Job

% qgsub job

s====== Welcome to TACC's Ranger System, an NSF TeraGrid Resource ----

Your job 18073 ("threadedmpi") has been submitted

% qstat
job-ID prior name user state submit/start at queue slots
18075 0.00001 threadedmp milfeld «r 01/17/2008 22:48:54 normal@il04-408 32
% showq
15

Cornell University

Center for Advanced Computing

Communication from Serial Region

include "mpif.h"

call MPI_Init thread(MPI_THREAD MULTIPLE, iprovided,ierr)
call MPI_Comm size (MPI_COMM WORLD,nranks, ierr)

call MPI_Comm_rank (MPI_COMM WORLD,irank,ierr)

if (irank == 0) then

call mpi_send(as,n,MPI_REAL8, 1,9, MPI_COMM WORLD, ierr)
call mpi_recv(as,n,MPI_REAL8, 1,1,MPI_COMM WORLD, istatus,ierr)
else if (irank == 1) then
call mpi_recv(as,n,MPI_REAL8, 0,9, MPI_COMM WORLD, istatus,ierr)
call mpi_send(as,n,MPI_REAL8, 0,1,MPI_COMM WORLD, ierr)
endif

if(irank .eq. 0) read(*,'(i5)') ireadl
call MPI_Bcast(ireadl,1,MPI INTEGER, 0,iwcomm, ierr)

(don’t forget error argument in f90 codes)

“Serial
Code”

16

Cornell University

Center for Advanced Computing

Broadcast in Parallel Region
!$OMP PARALLEL private (i,ithread,nthreads, icpl, icp2, icpd)

ithread = OMP_GET_THREAD_NUM()

if (ithread == 0) then

if (irank .eq. 0) read(*,'(i5)') iread2

call MPI Bcast(iread2,1,MPI INTEGER, 0,iwcomm, ierr)
end if - - Parallel
Region

(don’t forget error argument in f90 codes)

17

Cornell University

Center for Advanced Computing

Point-to-point in Parallel Region

1SOMP DO ordered

do i = 1,nthreads Parallel
1SOMP ordered Region
if (irank == 0) then "
call mpi_send(as,ns,MPI_REAL8, 1,ithread,MPI_COMM WORLD, ierr) 2 .
call mpi_recv(as,ns,MPI_REAL8, 1,ithread,MPI_COMM WORLD, istatus,ierr) $e
else if (irank == 1) then k] L'J
call mpi_recv(as,ns,MPI_REAL8, 0,ithread,MPI_COMM WORLD, istatus,ierr) g g
call mpi_send(as,ns,MPI_REAL8, 0,ithread,MPI_COMM WORLD, ierr) '; ¥
endif ugj g
!$SOMP end ordered | Not needed] =~
end do with mvapich2
if (irank == .and. ithread == 0) then m
call mpi_send(as,n,MPI_REAL8, 1,ithread,MPI_COMM WORLD, ierr) % i
call mpi_recv(ar,n,MPI_REAL8, 1,ithread,MPI_COMM WORLD, istatus,ierr) 8 %
else if (irank == .and. ithread == 0) then o c
call mpi_recv(ar,n,MPI_REAL8, 0,ithread,MPI_COMM WORLD, istatus,ierr) K LL
call mpi_send(as,n,MPI_REAL8, 0,ithread,MPI_COMM WORLD, ierr) E %
endif £
!$OMP barrier g 2
1$OMP END PARALLEL End of Parallel =

call mpi_finalize (ierr) End of MPI 18

Cornell University

Center for Advanced Computing

Hybrid Communication Cost (Output from tmpi)

Mvapichl
Serial Region Ping Pong (words:secs) 400000: 0.00509
Serial Region Broadcast (sec) 0.00002
Parallel Region Broadcast (sec) 0.00001
Parallel region messages:
One Large message size:secs 400000 tot time: 0.00561
16 Small messages size:secs 25000 tot time: 0.00534

individual times: 0.00034 0.00033 0.00034 0.00033 0.00033 0.00033 0.00033
0.00034 0.00033 0.00033 0.00033 0.00033 0.00033 0.00034 0.00033 0.00033

OpenMPI
Serial Region Ping Pong (words:secs) 400000: 0.00501
Serial Region Broadcast (sec) 0.00005
Parallel Region Broadcast (sec) 0.00001
Parallel region messages:
One Large message size:secs 400000 tot time: 0.00550
16 Small messages size:secs 25000 tot time: 0.08949

individual times: 0.08383 0.00037 0.00037 0.00038 0.00037 0.00065 0.00035
0.00036 0.00034 0.00035 0.00033 0.00034 0.00037 0.00035 0.00035 0.00036

19

Cornell University

Center for Advanced Computing

Why the Difference in Results?

» Explanation: mvapich has a special queue service which allows
multiple short messages (all having the same destination) to be sent
as quickly as one long message!

20

