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Stampede Specs 

• 6400+ Dell PowerEdge C8220z server nodes in system 

– 16 Intel Xeon E5-2680 “Sandy Bridge” cores per node, 102400 total 

– 32GB memory per node, 200TB total 

• Over 6400 Intel Xeon Phi™ SE10P coprocessor cards 

• 2+ petaflop/s Intel Xeon E5 

• 7+ additional petaflop/s of                                                               

Intel Xeon Phi™ SE10P coprocessors                                                 

to change the power/performance                                                  

curves of supercomputing 

• Over 70% of cycles are from Xeon Phi 

• Learn to leverage those 7+ Pflop/s 

 Photo by TACC, June 2012 
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Xeon Phi: What Is It? 

• Complete system on PCIe card (Linux OS, processor, memory) 

• x86-derived processor featuring large number of simplified cores 

– Many Integrated Core (MIC) architecture  

• Optimized for floating point throughput 

• Modified 64-bit x86 instruction set 

– Code compatible (C, C++, FORTRAN) with re-compile 

– Not binary compatible with x86_64 

• Supports same HPC programming paradigms with same code (MPI, 

OpenMP, Hybrid). 

• Offers new Offload paradigm 

– C/FORTRAN markup to denote code to execute on Phi at runtime 

– Link to MKL library implementation which can offload automatically 
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Stampede Footprint vs. Ranger 

 

 

 

 

 

 

 

 

 

 

• Capabilities are 17x; footprint is 2.7x; power draw is 2.1x  

Ranger: 3000 ft2 

 0.6 PF 

 3 MW 

Stampede:  

8000 ft2 

10 PF 

6.5 MW 
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How Does Stampede Reach Petaflop/s? 

• Hardware trend since around 2004: processors gain more cores 

(execution engines) rather than greater clock speed 

– IBM POWER4 (2001) became the first chip with 2 cores, 1.1–1.9 GHz; 

meanwhile, Intel’s single-core Pentium 4 was a bust at >3.8 GHz 

– Top server and workstation chips in 2014 (Intel Xeon, AMD Opteron) 

now have 4, 8, even 15 or 16 cores, running at 1.6–3.2 GHz 

• Does it mean Moore’s Law is dead? No! 

– Transistor densities are still doubling every 2 years 

– Clock rates have stalled at < 4 GHz due to power consumption 

– Only way to increase flop/s/watt is through greater on-die parallelism… 
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CPU Speed and Complexity Trends 

Committee on Sustaining Growth in Computing Performance, National Research Council.  

"What Is Computer Performance?"  

In The Future of Computing Performance: Game Over or Next Level?  

Washington, DC: The National Academies Press, 2011. 
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Trends for Petaflop/s Machines 

• CPUs: Wider vector units, more cores 

– General-purpose in nature 

– High single-thread performance, moderate floating point throughput 

– 2x E5-2680 on Stampede: 0.34 Tflop/s, 260W 

• GPUs: Thousands of very simple stream processors 

– Specialized for floating point 

– New programming models: CUDA, OpenCL, OpenACC 

– Tesla K20 on Stampede: 1.17 Tflop/s, 225W 

• MIC: Take CPU trends to an extreme, optimize for floating point 

– Retain general-purpose nature and programming models from CPU 

– Low single-thread performance, high aggregate FP throughput 

– SE10P on Stampede: 1.06 Tflops/s, 300W 
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Attractiveness of MIC 

• Programming MIC is similar to programming for CPUs 

– C/C++, Fortran 

– OpenMP, MPI 

– MPI on host and coprocessor 

– General purpose computing, not just kernels 

– In many cases, just re-compile  

• Optimizing for MIC is similar to optimizing for CPUs 

– “Optimize once, run anywhere” 

– Fundamental architectural similarities 

• Offers a new, flexible Offload programming paradigm 

– Resembles GPU computing patterns in some ways 
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MIC Architecture 

• SE10P is first production version used in Stampede 

– Chip, memory on PCIe card 

– 61 cores, each containing:  

• 64 KB L1 cache 

• 512 KB L2 cache 

• 512 byte vector unit 

– 31.5 MB total coherent L2  

    cache, connected by ring bus 

– 8 GB GDDR5 memory 

• Very fast, 352 GB/s vs 

    50 GB/s/socket for E5 

Courtesy Intel 

www.cac.cornell.edu 9 1/15/2015 



Key Design Decisions: Saving Power 

• Omit power-hungry features such as branch prediction, out-of-order 

execution (at the cost of single-thread performance) 

• Simplify instruction decoder so that instructions are issued every 

other clock cycle from a given thread (a single thread can utilize at 

most 50% of a core) 

• Reduce clock speed (at the cost of single-thread performance, 

obviously) 

• Eliminate a shared L3 cache in favor of coherent L2 caches 

(performance impacts are subtle – can help and hurt) 
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Key Design Decisions: Floating Point Performance 

• Use wide vector units (512-bit vs. 256-bit for Xeon E5) 

• Use more cores 

• Use up to four hardware threads per core 

– Compensates for some of the power-saving compromises, such as the 

in-order execution and the simplified instruction decoder 

• Use fast GDDR5 memory 

 

 

As a result: 

Performance characteristics are very different from server CPUs! 
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MIC vs. CPU 

 

Number of cores 

Clock speed (GHz) 

SIMD width (bit) 

DP Gflop/s/core 

HW threads/core 
 

 

• CPUs designed for all workloads, high single-thread performance  

• MIC also general purpose, though optimized for number crunching 

– Focus on high aggregate throughput via lots of weaker threads 

– Regularly achieve >2x performance compared to dual E5 CPUs 

MIC (SE10P) CPU (E5) MIC is… 

61 8 much higher 

1.01 2.7 lower 

512 256 higher 

16+ 21+ lower 

4 1* higher 
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Two Types of CPU/MIC Parallelism 

• Threading (work-level parallelism) 

– OpenMP, Cilk Plus, TBB, Pthreads, etc. 

– It’s all about sharing work and scheduling  

• Vectorization (data-level parallelism) 

– “Lock step” Instruction Level Parallelization (SIMD)  

– Requires management of synchronized instruction execution 

– It’s all about finding simultaneous operations 

• To fully utilize MIC, both types of parallelism need to be identified 

and exploited 

– Need 2–4+ threads to keep a MIC core busy (in-order execution stalls) 

– Vectorized loops gain 8x performance on MIC! 

– Important for CPUs as well: gain of 4x on Sandy Bridge 
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Parallelism and Performance on MIC and CPU 

Courtesy Intel 
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• PCIe card with Intel 

Xeon Phi™ (MIC) 

• Host with dual Intel Xeon 

“Sandy Bridge” (CPU) 

Typical Configuration of a Stampede Node 

Linux OS Linux 

micro OS 

PCIe 

HCA 

Access from network: 

ssh <host> (OS) 

ssh <coprocessor> 

       (mOS) 

Virtual IP* 

service for MIC 
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MIC Resembles a Compute Node 

• Participates in network via established APIs 

– TCP/IP, SSH, NFS; MIC has its own hostname 

• Runs its own OS, you can log into it and open a Linux shell 

• $HOME, $WORK, $SCRATCH are mounted on it 

– You or your programs can read/write/execute files 

• MPI infrastructure can launch jobs on it 

 

But, there are some key differences 

• SLURM and batch system don’t directly interact with MIC cards 

• Minimal 3rd party software modules are installed on it 

• The cluster is heterogeneous when MPI is used on MIC and hosts 
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MIC Execution Models for Stampede 

Native Execution 

• Compile one executable for MIC architecture 

 icc –O2 –mmic –openmp myprog.c –o myprog.mic 

• Convenient to use .mic suffix for executables to serve as a 

reminder 

• Run directly on MIC coprocessor 

– Use ssh or TACC’s convenient  micrun launcher 

 

c123-456$ ssh mic0 

~ $ export OMP_NUM_THREADS=180 

~ $ /path/to/myprog.mic 
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MIC Execution Models for Stampede 

Native Execution 

• micrun launcher is designed to make running MIC executables 

simple from host.   

– Set specific environment variables with MIC_ prefix 

– Receive proper return value 

– Can be used explicitly via micrun, or implicitly 

 

c123-456$ export MIC_OMP_NUM_THREADS=180 

c123-456$ /path/to/myprog.mic 

 

c123-456$ export MIC_OMP_NUM_THREADS=180 

c123-456$ micrun /path/to/myprog.mic 
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MIC Execution Models for Stampede 

“Symmetric” Execution 

• Message passing (MPI) on 

CPUs and MICs alike 

• Unified source code 

• Code modifications optional 

– Assign different work to 

CPUs vs. MICs 

– Multithread with OpenMP for 

CPUs, MICs, or both 

• Compile twice, 2 executables 

– One for MIC, one for host 

• Run in parallel using MPI 

 Courtesy Scott McMillan, Intel 
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MIC Execution Models for Stampede 

Symmetric Execution 

• Use ibrun.symm MPI launcher. 

– Like ibrun, but adds capability of launching processes on MIC 

coprocessors 

– Use -c argument to specify host CPU executable, -m to specify MIC 

executable 

– Standard SLURM params (-N, -n) determine total number of compute 

nodes, and host processes 

– MIC_PPN environment variable to control number of MIC processes per 

Phi card 

– Only MIC_ prefixed environment variables are sent to MIC processes 

• Right now, only Intel MPI implementation (impi) supported. 
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MIC Execution Models for Stampede 

Offload Execution  

• Directives indicate data and 

functions to send from CPU 

to MIC for execution 

• Unified source code  

• Code modifications required 

• Compile once  

• Run in parallel using MPI 

and/or scripting, if desired 

Courtesy Scott McMillan, Intel 
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MIC Execution Models for Stampede 

Offload Execution 

• Option 1: With compiler-assisted offload, you write code and offload 

annotations 

– No specific compiler flags needed, offload is implicit where markup is 

encountered 

– Offload code will automatically run on MIC at runtime if MIC is present, 

otherwise host version is run 

• Option 2: With automatic offload, you link to a library that can 

perform offload operations (e.g. MKL) 

– Stampede MKL is offload-capable, all you do is link to it (-lmkl)! 

– Need to explicitly tell MKL to use offload at runtime via environment 
variable MKL_MIC_ENABLE=1 
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Which Execution Model? 

• Native is very useful for performance testing, empirical analysis 

– Works well for interactive jobs 

– Re-compile and run! 

• Use Symmetric to run existing MPI code on MIC only, or Host+MIC 

– MIC coprocessor is just another node 

– Using both Host and MIC creates a heterogeneous cluster 

– Potential balancing issues, but these may possibly be addressed by 

runtime parameters, not necessarily code changes 

• Use automatic offload for code that uses an API implemented by 

MKL (e.g., BLAS, LAPACK) 

• Compiler-assisted offload can give fine-grained control: keep slow, 

serial parts on CPU, run tight parallel loops on MIC or both 
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Labs 

• Interactive Launching 

– Run a simple script on host, MIC interactively 

– Use the script to see how environment variables are handled on each 

• Native OpenMP 

– Compare native performance on host to native performance on MIC for 

the same OpenMP source code 

– Note that this code is very friendly to MIC: floating-point intensive, light 

on usage of memory, easy to multithread, easy to vectorize 
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(Previous Labs) 

• Interactive Launching 

– Run native code on host, MIC interactively 

• Simple Symmetric MPI 

– Use ibrun.symm to control number of jobs running on host and MIC, 

verify that they’re running where you think they are 

– If you use wget to download code, use the --no-check-

certificate option  

 

Next week in advanced MIC: 

• Non-trivial Symmetric example 

– Use hybrid code (MPI+OpenMP) to calculate PI 

– Investigate issues related to performance disparity between host and 

coprocessor   
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