
Incorporating Interactive Compute Environments into

Web-Based Training Materials using the

Cornell Job Runner Service
Susan Mehringer

Cornell University Center for Advanced Computing
530 Rhodes Hall
Ithaca, NY 14853
1.607.254.8777

shm7@cornell.edu

Aaron Birkland
Cornell University Center for Advanced Computing

535 Rhodes Hall
Ithaca, NY 14853
1.607.255.3431

apb18@cornell.edu

ABSTRACT

Online training materials, such as the Cornell Virtual WorkshopSM

have many advantages, the foremost being that they are always

available as a 24x7 option for learners who want to study a topic

on demand and at their own pace. It can be challenging to create

online materials that are engaging and provide a realistic learning

environment. Traditionally, training materials and compute

environments have been separate entities. Even in the HPC

environment, students learn from online materials in one window,

then log into a new machine or session to try out new skills or

concepts. Accessing this second environment can impose

obstacles such as gaining access to the appropriate computer and

learning to navigate a computer-specific login environment and

file system. In an effort to circumvent these obstacles, the Cornell

University Center for Advanced Computing (CAC) developed the

Cornell Job Runner ServiceSM (CJRS), along with a general-

purpose toolkit for using the CJRS to embed a computing

environment directly into web pages, backed by real or virtual

compute resources. This implementation provides the learner

immediate access to a compute environment that looks and feels

like a typical HPC login node or batch job, allowing incorporation

of on-demand learning experiences interspersed with general

training content. With CJRS, students can try out commands and

run jobs without obtaining an account or leaving the learning

environment to sign in to a remote machine. This paper explores

the use of the CJRS toolkit to provide three different interactive

modes for learners: a Linux console configured as a general login

node, a form element that launches a pre-defined SLURM job,

and a guided session which allows the user to walk through pre-

planned steps of compiling, fixing, and running MPI code.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

XSEDE '15, July 26 - 30, 2015, St. Louis, MO, US A

Copyright is held by the owner/author(s). Publication rights licensed to

ACM.

ACM 978-1-4503-3720-5/15/07…$15.00

DOI: http://dx.doi.org/10.1145/2792745.2792765

Categories and Subject Descriptors

D.2.11 [Software Architectures] Patterns

D.4.7 [Organization and Design] Interactive Systems

H.3.5 [Online Information Services] Web-based services

H.5.2 [User Interfaces]: Interaction styles, Training, help, and

documentation

K.3.1 [Computer Uses in Education]: Distance learning

General Terms

Management, Design, Human Factors.

Keywords

Online training, Interactive, Toolkit, Remote execution, Web

service, SLURM.

1. INTRODUCTION
The Cornell Virtual Workshop is a set of web-based,

asynchronous learning modules on advanced computing topics

ranging from high-performance parallel computing to data

analysis and visualization. Over 100,000 learners have accessed

Cornell Virtual Workshop modules since the online learning

platform was launched by the Cornell University Center for

Advanced Computing (CAC). CAC has received numerous grants

from the National Science Foundation (NSF), the Department of

Defense (DOD), and private industry to develop and deploy

Cornell Virtual Workshops. For example, under an NSF grant,

CAC developed the Ranger Virtual Workshop to train educators

and students on how to effectively use the Ranger supercomputer

[1]. Subsequently, CAC developed the Stampede Virtual

Workshop [2] which included modules on new technologies such

as Many Integrated Core (MIC) and Vectorization in Modern

CPUs and the Intel® Xeon® Phi. Today, thirty-three Cornell

Virtual Workshop modules are available to the research and

education community through the XSEDE User Portal [3]. These

include specific training modules and complete Computer Science

courses such as Jim Demmel's Applications of Parallel

Computers [4].

Since the launch of the first Cornell Virtual Workshop, CAC’s

goal has been to continually improve the learning environment

and experience. With this goal in mind, our training and

consulting team has developed and integrated a new mechanism

into the Cornell Virtual Workshop platform called the Cornell Job

Runner Service (CJRS). CJRS provides the learner immediate

access to a compute environment that looks and feels like a typical

HPC login node or batch job. It lowers barriers to learning by

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2792745.2792765

eliminating the need to obtain an account on an appropriate

resource, sign into a remote machine, and understand the local

compute environment. The CJRS developer toolkit enables

courseware developers to quickly incorporate platform-

appropriate HPC exercises into web-based training modules.

2. APPLICATIONS
The Cornell Job Runner Service toolkit provides a general-

purpose ability to launch jobs on a computing resource, and

interact with their runtime environment (for example, writing to

the STDIN of a process, reading the contents of a file, etc.). In

the context of the Cornell Virtual Workshop, we leverage this

ability to enable three learning application environments: a Linux

console configured as a general login node, a form element that

launches a pre-defined SLURM job, and a guided session which

allows the user to walk through pre-planned steps such as run,

edit, and run again. All three environments use SLURM to

launch jobs on a Virtual Machine (VM) as needed. All jobs are

terminated when the web page is no longer active or the job

completes on its own terms.

2.1 Console Application
The console application of the CJRS toolkit enables a rudimentary

console to be embedded in a web page. The console displays the

STDIN and STDOUT of any command that is typed in, providing

the learner with a simple, easy-to-use interactive session. This

example uses a simple, scrollable preformatted text box to show

console output, and has a text input for the learner to issue

commands in real time. When the learner selects “Launch a

console,” the SLURM srun command runs and launches a VM

with a bash shell, as shown in Figure 1. Each time a learner types

content into the text input box and selects enter, the command that

the learner entered runs on the VM, with the resulting content

posted back to the text box. This does not provide a window to a

real console, and it is not a terminal emulator. It can be used to

execute individual commands, but at present cannot be used for

activities that assume that the learner is at a terminal, such as

editing with vi.

Figure 1: Console Application Example

2.2 Job Launch Application
The job launch application consists of a web page form element

that can be used to issue either a SLURM srun or sbatch

command to submit a predefined job or command to a previously

started VM. This functionality can be used to run any command

or program on-the-fly to show live output or to demonstrate a run

that is dependent on changing input. Figure 2 demonstrates

compiling and running a C program. It can also be used as a

building block to demonstrate a more complicated set of tasks.

A single web page can contain two or more independent forms

that run unrelated commands. The forms can be submitted any

number of times, in any order, but any two forms cannot be

executing at the same time. This only becomes an issue if

execution time for a given job is long, or a job waits in a queue. If

a form is submitted while another form is still running, the

submission will disable the job that was already running.

Figure 2: Job Launch Application Example

2.3 Guided Session Application
In a Guided Session, we present the learner with several different

tasks to complete. The learner interacts with multiple "widgets"

that dynamically react to the leaner’s input. We call this a "guided

session" because the tasks are not performed in isolation like

the previous simple multi-form example, but are all related and

share state. In guided sessions, we use srun to run a shell just

like the simple console example, but instead of presenting the

learner with a shell-like interface, we present a series of widgets

that interact with the bash session. We also run sbatch and

srun from within jobs. This allows us to use srun to run a shell,

then from within that shell issue subsequent srun and sbatch

commands. We can then use a background bash shell managed

by srun to demonstrate the launching of batch jobs. There is no

explicit launch button in this guided session example. The header

section contains code that automatically starts the srun session

when the page is loaded. We can use the class xjr-display-

hide-until-run to hide elements until the job is running, or

we can do our own special processing by using the

xjc_client.onRun()hook. For example, if MPI is needed,

we demonstrate this effect by submitting a 'module load'

command right away to make sure MPI is available for the whole

session. Alternatively, the learner may perform this step. In the

example shown in Figure 3, the learner is asked to run an MPI

code that fails, edit the code, then run again.

Figure 3: Guided Session Application Example

3. THE CJRS CLIENT: HOW IT WORKS
The Cornell Job Runner Service toolkit consists of a web service,

a JavaScript client, and html constructs that allow the client to

interact with the page content.

3.1 Web Service
The web service exposes a REST API for clients to run and

manage jobs on an execution resource. It is composed of two main

components: the JobExecutionService and JobContextService.

The JobExecutionService executes a single command as a

submitted "job" and provides access to the job's state while it is

running. The JobContextService provides a location on the file

system for the input/output files relevant to the job, and provides

client access to those files (i.e., allows an external client to list the

files, read their contents, write to them, etc.), and performs

management tasks such as cleanup.

3.1.1 JobExecutionService
The JobExecutionService manages the execution of a job in a

resource environment. Its parameters include a single command

with associated arguments, and a list of files that shall be present

when the job executes (e.g., data files, source code, etc.). The

JobExecutionService can be used to enforce job limits, such as a

run time limit. It monitors all jobs and terminates jobs that are no

longer active. It allows the client to look up the job state,

including whether the job is pending, running, or completed, and

obtain a list of files that are present at any point during a job’s

execution. An implementation of the execution service may

restrict the set of commands that may run.

3.1.2 JobContextService
The JobContextService sets up and tears down an empty directory

at job start and cleanup. This is the job context. It serves as the

home directory for any jobs running in the context. The

JobContextService creates and populates any files specified upon

job submission, and provides a list of file information for all files

in the context of a given job during or after its execution

including name, modification time, size, and location. This

includes any files created or modified during the execution of a

job. In addition, the JobContextService creates special files

.STDIN and .CONSOLE to be used for the job’s I/O. Any content

appended to the .STDIN file will be piped to the running

command's STDIN, and the process's STDOUT and STDERR are

appended to the .CONSOLE file.

3.2 JavaScript Client
The JavaScript client is intended to be a convenient tool for

constructing dynamic pages that interact with the CJRS web

service via its REST API. It provides methods to inspect and

interact with job state (e.g., read the content of files in the job’s

environment, write to file in the job’s environment), as well as

trigger actions in response to changes in job state (e.g., a new file

is created, a file is updated, the job finishes, etc.). For example,

the JavaScript client may be used to upload user-supplied code

from a text box, run a command to compile the code, run the

resulting executable, and display the contents of an expected

output file once it has been written by the executable as a

triggered action.

3.3 HTML Constructs
The JavaScript client defines a list of html elements and classes

that, if present in the document, result in certain behaviors by the

client. For example, any HTML element with the attribute

class = “xjr-input-file” and

a title=”<filename>” attribute will automatically be

uploaded by the client into the environment of a job before it

executes, with the filename matching the value of the title

attribute. Given the fairly extensive list of html constructs

interpreted by the client, in some cases it is possible to create

pages that use the CJRS without having to write additional

JavaScript at all.

The Cornell Job Runner Service comes packaged with an

implementation of JobRunnerService that uses the SLURM

scheduler to run all submitted jobs. The client supplies a srun

command with arguments to run a single command, or a sbatch

command along with a batch script to execute everything in the

batch script. The SLURM JobRunnerService forwards the

supplied SLURM commands to a running SLURM scheduler. The

SLURM scheduler is infrastructure independently deployed by a

site to manage allocation of compute resources and job execution.

The resources managed by the SLURM scheduler known to the

JobRunnerService are available as an execution environment for

running jobs submitted by the client, be it an institutional

compute cluster, an XSEDE resource, or dedicated training nodes.

In this sense, SLURM is an abstraction layer that creates

flexibility in the type of compute resources that are exposed by the

CJRS.

4. DEPLOYMENT OPTIONS AND

SYSTEM REQUIREMENTS
The Cornell Job Runner Service was intentionally designed to be

a light weight mechanism, leaving much of the exposed

capabilities and performance characteristics to the environment in

which it is deployed. For example, the SLURM

JobExecutionService interacts with a SLURM scheduler, but it is

completely agnostic as to the nature of the underlying resources

managed by SLURM. Issues such as how large the SLURM

cluster is, what software is installed on it and inherent resource

limits such as compute time or number of nodes are concerns

outside of the scope of the CJRS, but they profoundly affect the

user experience.

There are a few system requirements for running the CJRS. It is

distributed as an executable JAR file (Java ARchive) that can be

run on the command line, or a WAR (Web application ARchive)

file that can be dropped into a servlet container such as Tomcat or

Jetty. To run as an executable JAR file, the service requires, at

minimum, an installed Java Runtime Environment (JRE), and

access to a high unprivileged port for exposing the web service

API to a browser. The browser needs to be capable of executing

JavaScript.

In its default configuration, the CJRS web service (either

deployed as an executable jar, or a war file in a servlet container)

is configured to use the SLURM JobExecutionService, and

directly invokes ‘srun’, ‘sbatch’, and ‘salloc’ commands that are

available on the host it is running on. A natural consequence of

this is that SLURM jobs are submitted using the same user ID as

owner of the CJRS web service process. For the purposes of

training and demonstration, it is recommended to deploy the

application so that it runs as a single, unprivileged user created

specifically for the purpose of training. In theory, however,

anybody who obtains the executable jar file may run it on a

machine they have access to, bound to some random high port

exclusive to that user, allowing it to launch SLURM jobs on their

behalf via the REST API.

As an example of a production-level deployment used for training,

the Cornell University Center for Advanced Computing operates

an instance of the CJRS that supports its training modules on a

single virtual machine instance in Red Cloud. That single machine

hosts the CJRS, the SLURM scheduler, and runs all the jobs

submitted to SLURM. SLURM is configured with a queue

containing only one node, capable of running 32 scheduled tasks.

Such a configuration is not suited to performing large HPC

computations, but works well for training exercises that involve

teaching, for example, MPI or OpenMP fundamentals, and is

inexpensive to run 24/7. Responsiveness is high, with most jobs

experiencing little or no perceptible delay before running.

The machine is configured with Open MPI and offers several

software packages operating on XSEDE resources such as

Stampede. While users need to be logged in to our training

modules in order to see the interactive exercises that submit to the

SLURM machine, all jobs on the machine execute as one single,

unprivileged user placed into a temporary home directory that

lasts for the duration of a single job. Since the machine is a virtual

cloud instance created from a master image, it can be destroyed

and re-created at any time, resetting it to its initial state.

5. SECURITY CONSIDERATIONS
Most security concerns are addressed by technologies and

techniques external to the web application. The CJRS API has

only one feature directly related to security: it can be configured

to require the client to provide an opaque ‘token’ string in a

request, and can be configured to pass this token to some external

service that must validate and accept it before the job can be

executed.

Authentication, authorization, and network security are provided

externally to the application. Network traffic between the client

and service can be secured by deploying the web service behind

an SSL termination proxy such as an appropriately configured

Apache or Nginx web server. Network traffic out of and between

compute nodes can be controlled by firewalls or network traffic

routing rules.

Authentication and authorization are provided by the web server

that serves the pages that contain exercises that use the CJRS

toolkit. If the CJRS web service is configured to require an

authentication token as a prerequisite for executing jobs, then a

backend service for validating this token would need to be

provided.

When using the SLURM-based JobExecutionService, SLURM

itself provides a degree of security for executing jobs. For

example, SLURM can enforce time or resource limits, and can

terminate all processes created in the context of a job when it

terminates. If SLURM is configured to launch virtual (Cloud)

nodes on which to execute jobs, then the compute nodes can be

considered ephemeral and disposable.

At the Cornell Center for Advanced Computing, all jobs execute

as a single, unprivileged user on a single virtual machine running

in Red Cloud. The node may be periodically terminated and re-

launched from its base image, assuring that the results of

malicious activity (such as through a local exploit allowing

escalated privileges) are limited in duration. Because all jobs

execute on the same node and the node is overcommitted in the

scheduler (i.e., more jobs can run on the node than there are

cores), it is possible for a user to negatively affect the performance

of the machine for others. This can be viewed as a denial of

service vulnerability. We decided that since the consequences are

rather low due to the low-volume training nature of the machine,

this risk was acceptable. While a more sophisticated configuration

of SLURM or the use of a container technology such as Docker

would add an additional layer of flexibility for security and

resource limitations, our needs do not require that at this point.

6. EXTENSIBILITY
The Cornell Job Runner Service itself can be configured to use

different JobExecutionService implementations. For example,

there is a local execution service which simply executes one of a

list of allowed commands locally on a machine, rather than

submitting a job to SLURM. We have found that a

JobExecutionService that submits to a scheduler (such as

SLURM) offers the most capability, flexibility, and security for

the smallest investment in developer effort when using the CJRS

toolkit for HPC training. Alternate JobExecutionService

implementations that can submit to other schedulers (such as

SGE) would be fairly simple to implement, but were not necessary

for our training objectives.

In our view, much of the extensibility in using the CJRS comes

from the abstraction offered by the scheduler (e.g., SLURM). For

example, Cornell has leveraged this capability to configure

SLURM to execute jobs on the same node that hosts the SLURM

scheduler and the CJRS web service, providing a highly

responsive and cost-effective environment that suits the modest

demands of training exercises.

If our training exercises required the performance characteristics

of a traditional multi-node cluster, we simply would have

configured SLURM differently so as to schedule jobs to run on a

cluster. Likewise, the Cornell CAC has created a toolkit and

plugin for SLURM that allows SLURM to dynamically launch

and tear down cloud nodes for the sole purpose of running a

single job. Had we chosen to configure the SLURM instance to

use this toolkit, the Cornell Virtual Workshop training exercises

would run entirely on virtual compute nodes that appear and

disappear on demand.

7. COMPARISON TO OTHER

AVAILABLE TOOLS
Finding existing software that could fulfill the educational and

ease of use requirements set forth in this project proved to be

challenging. There were four key requirements that needed to be

met in order to satisfy all our use cases:

1. Integrate into existing, mature training documentation in

the form of .html or .aspx files,

2. Emulate the software stack and fundamental HPC

technologies (MPI, OpenMP, job submission) of

XSEDE resources such as Stampede,

3. Allow users to do potentially dangerous things in a

secure fashion, such as compile and run C code,

4. Support interaction paradigms ranging from a full

command line interface (shell), to clicking a button to

run a code snippet embedded on a page.

IPython Notebook [5] is a Python-based platform for creating

interactive web pages containing mixed code, text, and media

content. Aimed at the scientific computing community, it has

successfully been used as an educational tool in the classroom

[6,7,8]. While it is primarily oriented around Python code,

IPython’s extensibility architecture allows ‘kernels’ to be

developed that allow the incorporation of code in other

languages [9].

On its face, IPython offers an excellent platform for creating

interactive learning modules. In our case, however, it did not offer

a clear way to incorporate exercises into existing static training

material in a piecemeal fashion (requirement 1), nor was it

amenable to interactively performing tasks commonly seen in

HPC workflows. Tasks such as compiling C code and launching

parallel MPI jobs to run the compiled code using a batch

submission scheduler (requirement 2) were not something that

IPython was designed to do.

The LinkSCEEM Supercomputing Training portal [10] provides

scientific computing training materials ranging from programming

concepts to using HPC systems. While it does not offer a public

toolkit or software platform for creating training modules, the

interaction paradigm used in the LinkSCEEM training modules is

notable. Each training module page contains a small icon which

will hide or unhide a transparent SSH console connected to a

node on the Euclid training cluster. Users of the training portal

must be given accounts on the training cluster in order to log in to

their account via the console. The leaner may go back and forth

between reading content in the module pages and performing

actions in the shell.

The SSH console paradigm employed by the LinkSCEEM

training portal is easily added as a layer to any existing html page

(satisfying requirement 1), and inherently meets requirements 2

and 3 by providing the user with an unrestricted command prompt

on a node in a fully-functional compute cluster. Unfortunately, it

does not meet requirement 4 as there is no way to embed

interactive content into a web page since all interaction is through

the console.

ISLET [11] (Isolated, Scalable, & Lightweight Environment for

Training) is a framework for creating disposable Linux instances

as Docker [12] containers, and providing access to them via SSH.

The approach of creating a throwaway virtual Linux instance

satisfies requirement 3 handily, as any malicious acts by the user

are confined to a disposable sandbox instance. However, ISLET

does not provide any sort of user interface, toolkit, or API for

integrating with web pages (as in the popup console in

LinkSCEEM) as implied by requirements 1 and 4.

Geordi [13] is an IRC (Internet Relay Chat) server that can

compile and run C++ code. It is intended for teaching and

discussing C++. Its backend architecture is designed to allow

arbitrary C++ code to run safely; avoiding infinite loops, memory

leaks, and other potentially dangerous problems (fulfilling

requirement 3). Because its functionality is specialized towards

executing C++ as its sole function, Geordi lacks the features

required for a full HPC toolset (requirement 2).

8. FUTURE DEVELOPMENT
The effectiveness of the Cornell Job Runner Service as a teaching

tool is highly dependent on the computing environment available

to the user. To learn MPI, OpenMP, or scientific computing in

Python, the computing environment must have the correct

software and frameworks installed and available. To learn how to

use a specific XSEDE resource such as Stampede, the computing

environment must look and feel like Stampede. Outside of

executing jobs on Stampede itself, re-creating an environment

similar enough to serve a useful training purpose is a challenge.

As part of the XSEDE Campus Bridging [14] effort, Cornell is

currently researching the use of containerization [15] technology

such as Docker to package and distribute container images

containing software stacks that mimic various XSEDE resources.

By running jobs within a container, it is possible to emulate the

look and feel of an XSEDE resource without requiring the host

system to have a particular software stack installed for that

purpose. Leveraged for the purpose of training, one can imagine

having a modest compute resource available for training (such as

a VM or small cluster) with a variety of XSEDE Campus

Bridging container images to choose from. In this scenario, the

Cornell Job Runner Service and a Campus Bridging container

image could be used in a lightweight manner to develop training

materials geared toward a specific XSEDE resource or a software

package located on an XSEDE resource. We plan to explore

container technologies in the upcoming year.

9. ACKNOWLEDGEMENTS
The Cornell Job Runner Service was developed in part with

funding from the Extreme Science and Engineering

Discovery Environment (XSEDE), which is supported by

National Science Foundation grant number ACI-1053575.

10. REFERENCES
[1] Mehringer, S., Woody, N., Dolgert, A., Lantz, S. &

Stanzione, D. (2011). Maximizing Computational Learning

for Faculty and Student Scientists: The Ranger Virtual

Workshop. TeraGrid Conference Proceedings. Retrieved

from:

http://www.cac.cornell.edu/about/pubs/RangerVirtualWorks

hop.pdf

http://www.cac.cornell.edu/about/pubs/RangerVirtualWorkshop.pdf
http://www.cac.cornell.edu/about/pubs/RangerVirtualWorkshop.pdf

[2] Stampede Virtual Workshop: TACC User Portal (n.d.).

Retrieved from https://portal.tacc.utexas.edu/stampede-

virtual-workshop

[3] XSEDE User Portal: On Demand Training (n.d.). Retrieved

from https://portal.xsede.org/web/xup/online-training

[4] Cornell Virtual Workshop: Applications of Parallel

Computers (2013). Retrieved from

http://www.cac.cornell.edu/VW/apc/

[5] Shen, H., 2014. Interactive notebooks: sharing the code: the

free IPython notebook makes data analysis easier to record,

understand and reproduce” in Nature, 515 (7525), 151

[6] Raju, A.B. and Annigeri, S. 2014. Computing in engineering

education: The current scenario, in IC3I 2014: International

Conference on Contemporary Computing and Informatics,

(Mysore, India 2014), IEEE, 130-134

[7] Wilson, G., Perez, F., Norvig, P., 2014. Teaching

Computing with the iPython Notebook, in SIGCSE '14

Proceedings of the 45th ACM technical symposium on

Computer science education, (Atlanta, GA 2014), ACM, 740

[8] Ketcheson, D., 2014. Teaching Numerical Methods with

IPython Notebooks and Inquiry-based Learning, in SciPy

2014: Proceedings of the 13th Python in Science

Conference, (Austin, TX 2014), 19-25

[9] Rossant, C., 2014, Creating a simple Kernel for iPython in

IPython interactive Computing and Visualization Cookbook,

Packt Publishing, Birmingham UK.

[10] Supercomputing Training Portal. Retrieved from

http://supercomputing.cyi.ac.cy

[11] ISLET. Retrieved from https://github.com/jonschipp/islet

[12] Merkel, D., 2014. Docker: Lightweight Linux Containers for

Consistent Development and Deployment, Linux Journal,

2014(239)

[13] Geordi – C++ eval bot. Retrieved from

http://www.eelis.net/geordi/

[14] Stewart, C. et al., 2012. What is Campus Bridging and What

is XSEDE Doing About It? in XSEDE ’12: the 1st

Conference of the Extreme Science and Engineering

Discovery Environment: Bridging from the eXtreme to the

Campus and Beyond, (Chicago, IL 2012), ACM, 47:1-47:8

[15] Dua, R., Raja, A. R., & Kakadia, D. Virtualization vs

Containerization to Support PaaS, in IC2E ‘14: IEEE

International Conference on Cloud Engineering, (Boston,

MA 2014), IEEE, 610-614.

https://portal.tacc.utexas.edu/stampede-virtual-workshop
https://portal.tacc.utexas.edu/stampede-virtual-workshop
https://portal.xsede.org/web/xup/online-training
http://www.cac.cornell.edu/VW/apc/
http://www.sigcse.org/events/symposia
http://supercomputing.cyi.ac.cy/
https://github.com/jonschipp/islet
http://www.eelis.net/geordi/

