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Abstract

Hourly meteorological forecast model initializations are used to guide the spatial

interpolation of daily Cooperative Network station data in the Northeastern United States.

The hourly model data are transformed to daily maximum and minimum temperature

values and interpolated to the station points after standardization to station elevation

based on the model temperature lapse rate.   The resulting bias (interpolation –

observation) is computed and then interpolated back to the model grids allowing daily

adjustment of the temperature fields based on independent observations.  These adjusted

data can then be interpolated to the resolution of interest.  For testing, the data are

interpolated to stations that were withheld during the construction of the bias field.

The use of the model initializations as a basis for interpolation improves upon the

conventional interpolation of elevation-adjusted station data alone.  When inverse

distance weighted interpolation is used in conjunction with data from a 40 km model

grid, mean annual absolute errors averaged 5% smaller than those from interpolation of

station data alone for maximum and minimum temperature, a significant decrease.  Using

data from a 20km model grid, reduces mean absolute error during June by 10% for

maximum temperature and 16% for minimum temperature.  Adjustment for elevation

based on the model temperature lapse rate improved the interpolation of maximum

temperature, but had little effect on minimum temperature.  Winter minimum temperature

errors were related to snow depth, a feature that likely contributed to the relatively high

autocorrelation exhibited by the daily errors.
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1.  Introduction

The uneven and relatively sparse distribution of stations that report daily

climatological variables has led to a rich literature describing and comparing techniques

to interpolate these point measurements.  In most cases, the impetus for interpolation has

been the use of these climatological observations for various agricultural, ecological or

hydrological applications.  Meyers (1994) reviews the basic statistical methodologies that

form the foundation for most climatological interpolations.  Traditional approaches have

ranged from relative simple inverse-distance weighting to more complex techniques like

kriging, splines (Hutchinson, 1991), and artificial neural networks (e.g. Rigol et al. 2001).

Jarvis and Stuart (2001a, 2001b) compare techniques for interpolating daily

maximum and minimum air temperature.  Their comparisons cover both interpolation

methods (Javis and Stuart 2001b) and the selection of interpolation variables (Javis and

Stuart 2001a).  In terms of methods, they find only subtle differences in the performance

of partial thin-plate splines (Hutchinson, 1991) with elevation as a linear covariate,

detrended ordinary kriging (Deutsch and Journel, 1992) and detrended optimal inverse

distance weighting.  Cross-validated root mean square errors (rmse) for these methods

over a single year averaged 0.83°C for daily maximum temperature and 1.15°C for daily

minimum temperature.

The spatial interpolation of temperature is invariably influenced by elevation.

Elevation emerged as the strongest covariate for estimating both daily maximum and

minimum temperature Jarvis and Stuart (2001a).  This relationship tended to be stronger

for maximum than minimum temperature.  Elevation has guided the spatial interpolation

of temperature in numerous other studies as well (e.g. Price et al., 2000; Johnson et al.,
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2000; Kurtzman and Kadmon, 1999).  In addition to the principal influence of elevation,

Jarvis and Stuart (2001a) show that northing (north map coordinate), directional distances

to the coast, and urbanization emerge as among the most important covariates.  Typically

more variables were required to interpolate daily minimum temperature than maximum

temperature, however even in the case of minimum temperature the addition of more than

three covariates has minimal effect on interpolation accuracy (Jarvis and Stuart 2001b).

The degree of urbanization was particularly important covariate for minimum

temperature (Jarvis and Stuart 2001a).  After addressing elevation, Choi et al. (2003)

showed a 30% reduction in minimum temperature interpolation errors by accounting for

urbanization.  Nonetheless, elevation exerted the primary influence.

Quantitatively, rmse for maximum temperature interpolation tend to be less than

those for minimum temperature.  For daily data, Jarvis and Stuart (2001b) show rmse in

the range of 0.8 to 0.9°C for maximum temperature and between 1.1 and 1.2°C for

minima.  Courault and Monestiez (1999) use a kriging approach to interpolate daily

temperature, but stratify their interpolations by circulation pattern.  The accuracy of these

interpolations for southeast France was improved only modestly by the stratification, as

elevation had a much greater effect.  In this region, root mean square errors were near

1.2°C for maximum temperature and 1.6°C for minimum temperature, higher values than

those reported Jarvis and Stuart (2001b) for England and Wales.  Thornton et al. (1997)

use a Gaussian weighting filter to interpolate several meteorological variables over

complex terrain.  Mean absolute errors are typical of other approaches that account for

elevation, 1.76°C and 1.95°C for daily maximum and minimum temperature,

respectively.



5

Eischeid et al. (2000) evaluate several interpolation methods for their ability to

estimate missing daily maximum and minimum temperature.  For daily maximum

temperature the best estimation procedure gave median monthly rmse values (for stations

west of the Mississippi River) ranging from 3.32°C (January) to 2.44°C (July).  For

minimum temperature these values increased to 3.62°C (January) and 2.68°C (July).

Elevation was not directly considered in either case.  Johnson et al. (2000) demonstrate

the use of the parameter-elevation regressions on independent slopes (PRISM) model to

interpolate mean annual temperature.  Mean absolute errors for annual maximum

temperatures were between 0.86°C and 1.00°C, with a value closer to 1.50°C for

minimum temperature.

Rigol et al. (2001) interpolated minimum temperature across the United Kingdom

using an artificial neutral network (ANN).  When trained on neighboring observations

and terrain variables such as elevation, distance to the nearest river and a measure of

terrain roughness, estimates were associated with a rmse of 1.15°C.  Snell et al. (2000)

used an ANN to simulate the downscaling of general circulation model (GCM) output.

Sets of four and sixteen stations were chosen to simulate GCM grids and used to estimate

daily maximum temperature at eleven interior stations.  Based only on data from the

simulated GCM grids they show the ANN to be superior to more conventional spatial

averaging and inverse distance weighting approaches.

Willmott and Matsuura (1995) discuss two “smart” interpolation procedures.

Topographically informed interpolation begins with an annual temperature field at a

network of stations.  Each temperature is reduced to sea-level based on the average

environmental lapse rate.  Temperatures are then interpolated to digital elevation model
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(DEM) grid points on this constant elevation field with the final temperature at each

DEM grid estimated based on an average lapse rate and the elevation of the point.

Topographically and climatologically informed interpolation (TCII) uses data

from a second more spatially dense temperature network, but having observations over a

different time period.  Data from the high-density network are interpolated to DEM grids

and the lower-resolution network station locations using topographically informed

interpolation.  Differences between the interpolated and observed values at the lower

resolution network stations (δT) are then computed and reflect the influence of the

different observation period. The δT values are then interpolated to the DEM grid and

used to adjust the temperatures that were interpolated from the high-resolution station

network.

In this study an alternative interpolation methodology is described.  It uses the

principal of TCII as a guide, but relies on gridded meteorological forecast model

initialization data (as the high density network) and independent daily temperature

observations (as the low density network).  Unlike TCII, both the model data and

observations reflect the same time period.  The premise is that the enhanced spatial

resolution of the initializations and the physical treatment of variables such as land use

and elevation by the model allow for more accurate interpolations, while the available

observations can be used to adjust any biases inherent to the model initializations.  The

method is evaluated on data from the northeastern United States for 2005 and compared

to two conventional distance-based interpolations that use only the station observations.
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2. Methods

a. Data

Real time hourly Rapid Update Cycle model (RUC) initializations for 2005 at 40

km x 40 km horizontal resolution were archived from an operational data feed.  Benjamin

et al. (1998) provide a description of the RUC model, with Smirnova et al. (2000)

providing additional information about the land use scheme. Although RUC

initializations at finer horizontal and vertical resolutions are available from archived

sources, the lower-resolution operational values that were available provide a stringent

evaluation of the interpolation methods relative to other approaches and allow the use of

the interpolations in conjunction with an array of real-time agricultural models.  This

latter attribute was the impetus for this study.  In addition, the 40 km x 40 km resolution

of the available real-time RUC initializations is similar to that of the North American

Regional Reanalysis (NARR) dataset (Mesinger et al., 2006).  This facilitates the use of

this dataset as input to the interpolation procedure described in this study and allows for

the potential development of interpolated climatological data fields.

A limited subset of data for each RUC grid point was extracted.  These included

metadata describing grid latitude, longitude, elevation and land cover type.  In addition,

hourly temperature data at 2 m and 1000, 950, 900, and 850 hPa were extracted, as were

the heights of the pressure levels.  These temperature and height data, which are

constrained by the vertical resolution of the model in the lower atmosphere, provided a

means of computing hourly temperature lapse rates at each RUC grid.  RUC grid points

encompassed the spatial domain shown in Figure 1, which is hereafter referred to as the

Northeast.
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Observed temperature data were from a subset of Cooperative Observer Network

stations that report daily maximum and minimum temperature data in real time.  The set

was restricted to those sites with 24-hour observation schedules ending in the morning (6

–9 a.m. local time).  This is the most common observation time in the network and

alleviated the problems of interpolating data between sites with different observation

schedules.  This restriction also eliminated the small number of sites that may have been

incorporated into the RUC initializations.  Between 350 and 400 Cooperative Network

observations are typically available on a given day.  Figure 1 shows a representative

distribution of these stations.  Given the real time application of the interpolation, the

station data were not subject to final quality control that typically occurs several months

after observation.  Nonetheless, the data did undergo preliminary quality control that

screens for same-station data inconsistencies, but does not make spatial between-station

comparisons.

To be comparable to the daily Cooperative Network maximum and minimum

temperatures, a spline curve (Press et al., 1992) was fit to the hourly RUC temperatures

within the 8 a.m. to 8 a.m. daily observation period and the preceding 7 a.m and

subsequent 9 a.m. values.  Including these boundary values eliminated a few uncommon

inconsistencies associated with starting or ending the spline at the potentially lowest

value within the 24-hour window.  Based on the spline, the maximum and minimum

temperatures within the 24-hour daily interval are obtained.

b. Elevation Adjustment

On day n, a minimum (maximum) temperature existed at each RUC grid point

based on the spline interpolation.  This value was also assigned a time of occurrence
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based on the initialization time corresponding to the lowest (highest) RUC hourly

temperature.  Before interpolating these minimum (maximum) temperatures horizontally

to station j, the temperature at each RUC grid  (Tr) was adjusted to the elevation of station

j , (zj) using the equation:

Tj = TR – ΓRzj . (1)

Tj is the adjusted RUC temperature and ΓR is the linear change in temperature for the

hour of minimum (maximum) temperature occurrence. ΓR is calculated between the RUC

pressure levels that encompass the station elevation.  Thus, instead of characterizing the

ambient topography, the RUC temperatures are projected to a plane with an elevation

corresponding to that of the station.  During summer, TR was typically –8.2°C m-1 for

maximum temperature and –3.7°C m-1  for minimum temperature.  Typical winter TR

values were 7.3°C m-1 and 6.5°C m-1 for maximum and minimum temperature,

respectively.

 c. Horizontal Interpolation

Horizontal interpolation of the adjusted RUC temperatures to the coordinates of the

station was then accomplished on this equal-elevation surface via multiquadric

interpolation (Nuss and Titley, 1994). This method is of the same class of interpolation

routines as the thin-plate spline procedures evaluated in previous studies (e.g. Jarvis and

Stuart, 2001b).  Multiquadric interpolation is a widely used means of meteorological data

interpolation that yields results that are similar or superior (e.g. Sokolov and Rintoul,

1999) to those based on thin plate splines.

The multiquadric interpolation procedure includes three tunable variables 1) r, the

radius beyond which grids do not influence the interpolation 2) λ, a smoothing parameter
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and 3) c, the multiquadric parameter.  Based on Nuss and Titley (1994), λ was fixed at a

relatively low value of 0.0025.  This provides minimal smoothing, and based on the

earlier work low, relatively stationary cross-validated rmse.  The multiquadric parameter

essentially ensures that the multiquadric function has continuous derivatives.  The

analyses were not sensitive to the choice of this small positive value, a result shared by

Nuss and Titley (1994).  Hence, this parameter was set to 0.06.

The radius of influence was also fixed based on a set of sensitivity analyses.  In

these analyses, (not shown) interpolation errors were found to decrease quickly as r

increased from 0.4° to 0.5°.  Including stations beyond a 0.8° radius contributed little to

reducing the interpolation error.  A relatively large 2.0° radius of influence was used in

the present evaluations to limit areas in which insufficient data precluded interpolation

and also to allow a more selective choice of stations based on topographic considerations

in addition to horizontal distance.  This radius is near the middle of the range of radii

evaluated in Nuss and Titley (1994).

For comparison purposes, separate horizontal interpolations were computed using

inverse distance squared weighting.  The 2.0° radius of influence was maintained for this

analysis.

 Given this background, the overall interpolation procedure progresses as shown

in Figure 2.  Multiquadric (or inverse distance weighting) interpolation is used in step 3

to interpolate the RUC temperature to the location of the target station.  Likewise in step

5, the computed biases are interpolated via the multiquadric (or inverse distance

weighting) procedure back to each RUC grid point.  The biases, defined at interpolated

RUC – station observation, at several stations are used in the interpolation in step 5.
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Once biases have been interpolated to all grid points, the interpolated bias is subtracted

from the original RUC temperature at each grid, producing an interpolated temperature

field at the resolution of the RUC that has been ground-truthed based on the set of

independent station observations.

If interpolation to a finer scale is desired, a similar procedure is followed.  In

addition to interpolation to the station locations in Steps 1 and 2, the RUC temperatures

are also elevation-adjusted and interpolated to points on a finer grid.  For example, the

finer grid might be represented by a 5 km DEM.  For computational efficiency, a smaller

radius of influence is used in this interpolation, such that it assures the presence of at least

one grid point in each of the four compass quadrants about the finer scale (DEM) grid

point.  Following these interpolations and the computation of biases in Step 3, the station

biases are interpolated to the finer scale grid points (with r = 2°) and the original RUC

interpolations adjusted to account for the observed biases.

c. Validation

An analogous procedure is used to validate the RUC-based interpolations in the

subsequent section based on cross-validation.  Each station serves as the finer scale grid

point and its bias is withheld during the interpolation of biases from the remaining

stations (Step 5).  This procedure is applied to each station iteratively resulting in an

independent interpolated temperature and observation at each station location from which

error statistics can be computed.

These cross-validation trials were repeated using three modifications of the above

interpolation procedure for comparison purposes.  To quantify the benefits of assimilating

the RUC analyses, the interpolation of elevation detrended observations from stations
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within the radius of influence using multiquadric interpolation (MQobs) and separately

inverse distance weighting (IDWobs) was evaluated.  Likewise, the RUC-based

multiquadric interpolation (MQRUC) was applied without the preliminary adjustment for

elevation differences (MQnoelev).  Table 1 summarizes these different analyses, as well as

method discussed in the next section.

3. Results

Table 2 summarizes the cross-validation results for these methods based on the

134,741 station-days evaluated.  A RUC-based method  is consistently associated with

the smallest error.  For minimum temperature, regardless of interpolation method, biases

are typically small (< 0.02), positive (interpolation warmer than observations) and not

significantly different from zero.  In terms mean absolute error (mae) and root mean

square error (rmse), the IDWRUC errors are 4-10% lower than the MQobs and IDWobs

errors.  These differences are significant at the α = 0.01 level.

For maximum temperature, the biases are larger and negative.  The errors

associated with the IDW methods are significantly different from zero (α = 0.01).  The

bias for the IDWobs method is notably larger than that of the other methods.  In terms of

mae and rmse, however the IDWRUC interpolation gives values that are about 7% lower

than those given by the other procedures.  These mae differences are statistically

significant (α = 0.01).

For minimum temperature the effect of adjusting the RUC data for elevation

(prior to MQ interpolaton) is trivial. The elevation adjustment plays a larger role for

maximum temperature, as the mae is reduced by 10% when an adjustment for elevation is
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made prior to interpolation.  This is to be expected given the relatively coarse 50 hPa

vertical resolution of the RUC initializations.  Lapse rates computed at this resolution are

a better representation of a well-mixed boundary layer profile, such as might be expected

near the time of maximum temperature occurrence, rather than a more stratified morning

sounding.

a. Seasonal biases

On a monthly basis, a strong season cycle in maximum temperature interpolation

errors is absent in MQRUC, IDWRUC and MQobs (Fig. 3a).  In terms of rmse the methods

behave similarly.  Only a subtle seasonal cycle exists, with minimum rmse during the

summer.  IDWRUC gives the lowest rmse during all months.

For minimum temperatures (Fig. 3b), the largest (most positive) biases generally

occur during the winter months, albeit the seasonal cycle is again weak.  In terms of

variance, the seasonal cycle is amplified, with larger rmse during the winter months for

all interpolation methods.  The IDWRUC interpolations are consistently the least variable.

However MQRUC  is associated with the smallest mean biases in almost every month.

Median errors tended to be larger (more negative in the case of maximum temperatures)

indicating some non-normality in the errors.  Based on the median errors, those from the

MQRUC interpolations were consistently closer to zero.

b. Geographical biases

There is not a consistent spatial pattern to the errors associated with the maximum

and minimum temperatures from the RUC-based interpolations (Fig. 4). Figure 4 is

representative of the spatial pattern of both maximum and minimum temperature errors

produced by the IDWRUC and MQRUC methods during the summer and winter months.
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The largest errors appear as isolated anomalies interspersed across the region.

Presumably these errors are artifacts of unique microclimates affecting specific stations

or non-meteorological peculiarities in the station observations.  There are several pockets

of relatively high errors along the Atlantic Coast.  However, there is not a consistent

relationship between distance from the coast and interpolation error.  Exceptions are six

stations that occupy RUC grids with land use classified as water.  In these grids,

interpolation bias for minimum temperature is consistently negative during both seasons,

indicating warmer RUC values.  Presumably the water surface moderates the diurnal

cycle in the RUC analysis. A similar bias, however, is absent for maximum temperature.

Analyses based on MQobs, show more spatial homogeneity in the bias field, with more

widespread areas of high bias along the Atlantic coast and the Appalachian Mountains.

In terms of individual stations, several of the stations with the largest mae during

summer also experience among the largest mae in winter.  Correspondence between

stations with the largest maximum and minimum temperature mae during the same

season is limited.  Exceptions include three stations in Maine that exhibit large summer

errors (two experience large winter errors as well).  The Maine stations exemplify the

influence that erroneous station observations exert on the interpolation.  Figure 5 shows

daily maximum temperature series at Jonesboro and Machias, Maine.  These sites are

17.4 km apart.  From Figure 5, it appears that the observer at Machias “shifts” the daily

observations, recording them on the most likely day of occurrence (which is typically the

calendar day before observation) rather than the day of observation, as specified by the

observation procedures.  It is also possible based on Figure 5 that Machias’ morning

observation time may be incorrectly specified in the metadata, particularly since the
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minimum temperatures also appear to be shifted.  Machias is also problematic in winter.

However, its observational inconsistencies do not exert as strong of an influence on

neighboring stations.

Other than sharing large mae, the stations with largest interpolation errors have little

in common.  The sites encompass a range of elevations and are dispersed across the

Northeast.  There is not an indication that distance to the Great Lakes influences the

errors, although there are few morning observation stations along the Lakes’ shorelines

(Fig. 1).  Station density differences across the region appear to have minimal effect.

Aside from the erroneous Maine station, a number of sites are located in northern New

England. This may be an indication that the varied topography of the region influences

the interpolation.  There is a tendency for biases to become more positive with increasing

elevation.  However, a linear regression of bias versus elevation explains less than 1% of

the variation in all cases (not shown).

In an effort to isolate and adjust for the effects of local topographic variations, a 5-

arc second DEM was used to characterize the slope of the terrain along an east-west and

separately north-south transect centered on each station.  Using the north-south transect

as an example, the topographic half-angle, Asouth, between the station and the closest

DEM grid to the south of the station is computed by:

Asouth =
180.0b
π

tan −1
Zs − ZD
f (Ys − YD)

 

  
 

  

 

 
 

 

 
 

,       (2)

where Y and Z are the latitude and elevation of the station (S) and DEM grid (D).  The

variable f is a function of latitude and is used to convert latitude to distance (m). When Zs
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< ZD, b equals 1.0, , otherwise b equals -1.0.  An analogous function is used to compute

the topographic half-angle to the north of the station, Anorth.

The topographic angle along the transect is then given by:

Ta =180 − Asouth − Anorth     (3)

Using this convention, stations located within depressions have topographic angles < 180,

while those located on domes have topographic angles > 180.  The topographic angle is

set to 180 in cases with sloped terrain such that ZD south < Zs < ZD north. There was no

indication that topographic angle, defined in this manner, influenced the magnitude or

sign of the interpolation bias.  An analogous procedure can be used for east-west

transects, with longitude substituted for latitude.  Combining Ta for both transects allows

the three-dimensional topography to be characterized.

c.  Temporal and Meteorological biases

Daily interpolation errors within three subregions, central New York, southern New

England and northern Virginia (Figure 1) were assessed in terms of temporal biases and

ambient weather conditions.  Figure 6 shows that within each subregion the lag-1

autocorrelation of mae exceeds 0.30 and in some cases approaches 0.60.  There are also

geographical and seasonal differences in autocorrelation behavior and magnitude.

During winter (January and February, since December data for 2005 are not sequential),

the mae for minimum temperature exhibits high lag-1 autocorrelation in all subregions

(Fig 6 a and b).  Assuming normality, these correlations are significant at the 95% level.

Lag-1 autocorrelation for minimum temperature bias, however, is lower, particularly in

the southern New England subregion, where this value becomes negative.  This is an



17

indication that large daily interpolation errors in southern New England have a tendency

to be followed by large errors of the opposite sign.  Maximum temperature bias exhibits

marginally significant lag-1 auto correlation in the central New York and northern

Virginia (not shown) subregions.  This is not the case in southern New England.

In summer, high positive correlation between the interpolation errors tends to persist

for several days. This is particularly true for minimum temperature (both mae and bias) in

the southern New England and northern Virginia (not shown) areas (Fig. 6d).  In these

regions, high autocorrelation for maximum temperatures errors is limited to a one-day

lag.  In contrast, maximum temperature mae and bias exhibit high correlations to lags of

6 days in central New York (Fig. 6c).  In this subregion autocorrelation in the summer

minimum temperature mae and bias series is generally low.

To investigate the factors that contributed to the largest daily interpolation errors, the

five largest daily average mae values for each subregion (values averaged over all

stations within a subregion) for maximum and  minimum temperature were isolated for

summer and winter months.  Surface weather maps based on 0000 and 1200 UTC

observations were examined to determine if there was a specific synoptic feature that was

associated with the largest (and separately smallest mae).  During winter, there was a

tendency for large interpolation errors to occur under high pressure for both maximum

and minimum temperature.  Of the 30 cases examined (five from each subregion for

maximum and minimum temperature) 27 occurred with high pressure centered over the

subregion.

In each subregion, several of the largest error values (for both maximum and

minimum temperature occurred during the period from January 30 – February 6.
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Otherwise, there was little correspondence in the dates of largest (or smallest) mae among

the subregions or between maximum and minimum temperature.

During summer, ten of the 15 largest maximum temperatures examined occurred on

days on which a stationary front affected the subregion.  For minimum temperature, nine

of the 15 instances of the largest errors occurred under high pressure.  The June 15-20

period was associated with large maximum and minimum temperature errors in all

subregions.  In terms of the lowest errors, high pressure was again the predominant

synoptic feature for minimum temperature.  The lowest errors, however, were

consistently found in highs of maritime tropical origins, while polar highs were typically

associated with the large error cases.  Except for the period from July 15-17, there was

little correspondence between the dates of the smallest errors among the subregions or

between maximum and minimum temperature.

A closer examination of the days with the largest errors revealed four general casual

mechanisms.  Errors in the observed data values continued to be problematic as discussed

previously. Likewise, large interpolation errors resulted from synoptic patterns such as

stationary and cold fronts that produced a sharp gradient of temperature across the

subregion of interest.  These cases were often confounded by the passage of frontal

boundaries near the start or end of the 8 a.m. observation period.

Microclimatic factors also appear to influence the accuracy of the interpolations.  On

August 9, 2005, a 1023 hPa surface high pressure system was centered over

Pennsylvania.  The RUC 2 m minimum temperature analysis showed a weak temperature

gradient across the subregion, in agreement with the observations (Fig. 7a).  There is also

good agreement between the RUC analysis temperature values and observations, with the
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exception of the 12°C observation (Fig. 7a).  Local experience indicates that cold air

drainage typically affects the cooler site.  The 6°C temperature difference between this

site and the station with the 18°C reading to the southwest is typical of the temperature

variation on nights with strong radiational cooling conditions.

Attempts to identify and account for such microclimatic effects were not successful.

Using topographic angles computed with Eq. 2 and 3, sites prone to cold air drainage

were characterized by Ta < 180.  After computing biases at each station (step 4 of the

interpolation procedure), the bias field was examined to determine if biases of a specific

sign preferentially occurred at sites with Ta < 180.  The binomial probability distribution

was used for this assessment.  If a preferred bias was indicated, the interpolation of biases

in step 5 was limited to stations with Ta < 180.  Thus, in interpolating to a station with Ta

< 180 in the cross-validation analysis, only those sites with Ta < 180 were used when a

preferential bias was present.

Although this procedure (denoted MQTa, hereafter) reduced the interpolation errors

in some cases, the overall effect was minimal.  Across all stations (not just those with the

largest mae), this procedure had little effect on bias or mae (Table 3).  It should be noted

that restricting stations to those with Ta < 180 limited the number available for

interpolation.  As a result, stations more distant from the target station were weighted

more heavily in the interpolation.  This increase in distance presumably counteracts any

benefit derived from assuring similar topographic character.

The final source of large interpolation errors results from poor representations of the

observed temperature field by the RUC analysis.  Such cases, which were rare, are

analogous to the erroneous station observation discussed earlier.  An example of this case
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is shown in Figure 7b.  Across the northern Virginia region, the RUC initialization

averages more than 5°C warmer than the observations.  In addition, the RUC

temperatures decrease by more than 5°C from the southern to northern portions of the

subregion.  The observed temperatures show little variation.  If the RUC temperature

gradient was absent, interpolation error would likely be small, since the station

observations would have adjusted the warm bias inherent in to the RUC analysis.  In this

case, the gradient introduces an erroneous gradient to the bias field that negatively affects

the subsequent adjustment and interpolation.

4.  Discussion

The analyses presented in the previous section indicate that mesoscale

meteorological model analyses provide a robust foundation for climatological station data

interpolation.  The RUC-based interpolation procedure gives results that are comparable

or superior to those presented in the literature for other regions (e.g. Jarvis and Stuart,

2001; Courault and Monestiez, 1999; Thornton et al., 1997).  When elevation-detrended

station-based interpolation procedures, such as those used in previous studies, are applied

to the present study domain, the model-based interpolations are superior, particularly in

terms of mae.  Both methods yield similar biases.  Having demonstrated the initial benefit

of the RUC-based interpolation scheme, future research efforts should investigate means

by which interpolation accuracy might be improved.  Such efforts should focus on three

primary areas.

The first deals with interpolation methodology.  The literature suggests similar

interpolation accuracy among partial thin plate smoothing splines, elevation-detrended
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ordinary kriging and detrended inverse distance weighting methods (Jarvis and Stuart,

2001b).  The current results, confirm these results given the similarities between the

MQobs and IDWobs error statistics.  However, in previous evaluations the inverse distance

method is outperformed by the spline-based approach.

There are also differences in methodological approach.  Most notably Jarvis and

Stuart (2001b) optimized the power function in their IDW approach and the tunable

spline parameters on a daily basis.  The current work adopted a static set of interpolation

method parameters, as the intent was to compare model and station-based results.  It

should noted that for a given method, the model-based interpolations are consistently

associated with lower errors.

Further improvements in the RUC-based interpolations are likely through real-time

optimization of the interpolation parameters.  Tuning of the parameters can be

accomplished through a series of cross-validation trials.  For a given day, cross-validation

trials based on different combinations of parameters could be compared and a set of

parameters selected such that error across the entire interpolation domain or subregions

are minimized.  In this case, the stations withheld for the computation of cross-validated

errors would also need to be withheld during parameter optimization to obtain

independent error statistics   The use of artificial neural network approaches in

conjunction with the model data should also be evaluated.

The autocorrelation of the interpolation biases might also be exploited to improve

the accuracy of the interpolations.  In a pilot investigation, runs of same-signed cross-

validation errors were tracked at each station.  When the likelihood of realizing a run of

the observed length by chance was sufficiently small (α = 0.05, based on a binomial
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probability distribution), an adjustment was made based on the median bias exhibited on

days within the run.  Thus, the interpolated temperature at the station on day n was

adjusted by the median bias on days n-k through n-1, where k is the length of the run.  At

the small sample of stations for which this procedure was tested, the results were

encouraging.

Despite this, it is unclear how this procedure could be adapted to the interpolation of

data to points other than existing stations.  Potentially there is a physical cause for the

persistent error magnitude that could be exploited to improve the interpolations.

Snowcover is a plausible mechanism.  Figure8 shows that, in the central New York

subregion, interpolation error tends to increase with snowcover. Over 25% of the

variance in minimum temperature mae is explained by snow depth in this figure.

Modifications to the interpolation procedure that account for such features, although

beyond the scope of this work, warrant future investigation.

Finally, interpolation accuracy has the potential to be improved via the use of higher

resolution RUC analyses.  To examine this possibility 20 x 20 km RUC initializations

were obtained for June, 2005.  The 20km RUC also has a finer vertical resolution, with

temperature and height information available at 25 hPa intervals.  Maximum temperature

interpolations benefited from the use of the higher resolution RUC initializations (Table

3).  The mae associated with MQRUC was 88% of the 40 km value, a similar reduction in

mae resulted for IDWRUC.  With the exception of IDWRUC, maximum temperature

interpolation biases were higher based on the 20km data.  Smaller reductions (about 7%)

in mae for minimum temperature were also realized using the 20 km RUC.  Most of the

improvement (for both maximum and minimum temperature) appears to come from the
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increase in horizontal resolution, rather than the increase in the number of vertical layers,

since a similar reduction in mae occurs for MQnoelev.  Likewise, the MQTa errors are not

affected by the increase in vertical resolution.

Across much of the domain, the 40km grids encompass multiple observation sites.

Thus, elevation, land use and meteorological features, that are captured by the model

grid, are also represented by the station field.  The finer resolution grid presumably

captures influences that are not detectable in the station data and incorporates these into

the interpolations.  Operationally, the increase in accuracy provided by the finer grid

needs to be weighed against computation time requirements, particularly if cross-

validation is used to optimize interpolation parameters.  Likewise future research

examining the influence of even finer resolution model initializations is warranted, but

beyond the scope of this work.  The RUC model is currently operational at 13 km

horizontal resolution.

5. Conclusions

Mesoscale meteorological model initializations such as those available from the

RUC model show promise as a means to guide the interpolation of independent daily

maximum and minimum temperatures.  In cross-validation trials, the mean annual

absolute errors associated with the 40-km-RUC-based interpolations averaged 5%

smaller than those from elevation-detrended multiquadric interpolation of station data

alone for maximum temperature and minimum temperature.  These improvements are

statistically significant at the 99% level, based on a two-sample t-test.  During June data

from a 20km RUC grid, reduced mae by 10% for maximum temperature and 16% for
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minimum temperature compared to two conventional station-based techniques.

Additional evaluations for other regions and time periods using the outlined methods

would strengthen these conclusions.

Adjustment for elevation based on the RUC lapse rates had little effect on the MQRUC

interpolation of minimum temperature.  The interpolation of maximum temperature was

improved by the adjustment for elevation.  Mean absolute errors were approximately

10% higher when elevation was ignored.  Presumably, the vertical resolution of the RUC

initializations used was too coarse to resolve the stratified vertical temperature profile

that characterizes early morning soundings.  However, under better mixed afternoon

conditions, the model lapse rates provided a more robust means of incorporating the

influence of elevation than empirical detrending.

The RUC-based interpolation errors displayed only subtle seasonality.  Likewise

large errors did not preferentially occur in association with specific topographic or static

surface cover types, nor did they favor a particular synoptic pattern.  However, there is

some evidence that winter minimum temperature errors are related to snow depth.  High

autocorrelation is a feature of the daily errors in summer and to a lesser degree winter.

The results demonstrate that the accuracy of real time spatial interpolations of daily

maximum and minimum temperature can be improved through the use of meteorological

model analyses.  It is likely that these results could be extended to produce longer-term

climatological data interpolations.  This application of the interpolation procedure would

require the use of long-term gridded model data sets such as the North American

Regional Reanalysis (NARR). Spatially, the 40 km RUC model and NARR are of a

similar resolution.  However, the three-hour temporal resolution of the NARR might be
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problematic as it will complicate the computation of instantaneous daily maximum and

minimum temperature.  The RUC-based approach also requires testing in regions with

more diverse topography, such as the western United States before the outlined procedure

can be applied outside of the Northeast.

Finally, the current results point to the utility of the interpolation procedure as a

means by which station data can be quality controlled.  Erroneous station data can be

identified both as outliers in the bias field and through a unique pattern of adjacent

bullseyes of large errors of opposite signs.  Identification of such observation errors in

real time would improve the accuracy of the interpolations.  It may also offer

improvements to existing spatial quality control methods that are applied prior to final

archival of the climate data.
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Table Legends

Table 1.  List of interpolation analyses conducted.

Table 2.  Average daily bias , mean absolute error (mae), and root mean square error

(rmse) by interpolation method for maximum and minimum temperature.  Bold values

are the smallest among the methods.

Table 3.  Comparison of average daily bias, mean absolute error (mae), and root mean

square error (rmse) during June, 2005  based on 20km and 40 km RUC analyses.
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Figure Captions

Figure 1.  Coordinates of 40 km RUC grid points (black dots) and location of morning

observation time Cooperative Network Stations (gray circles).  The gray boxes highlight

subregions in which an analysis of the causes of large station errors was conducted.

Figure 2.  Flow chart of RUC temperature interpolation procedure.  The numbers

correspond above each box refer to the sequence of steps referred to in the text.  The

panels to the left illustrate the interpolation steps.  The letter A denotes the a station

location.  Likewise the word bias is associated with the difference between the

interpolated RUC temperature and the observed temperature.  Thus, the word BIAS also

denotes station locations.  In the final pattern the letter T denotes the adjusted RUC

temperatures at each grid.

Figure 3.  Monthly mean error (solid) and root mean square error (dashed) associated

with MQRUC (squares), IDWRUC (circles) and IDWobs (triangles) interpolation of daily a)

maximum and b) minimum temperature.

Figure 4.  Average seasonal MQRUC  interpolation errors for June, July and August

minimum temperature.  Areas with absolute errors ≥ 1°C are shaded.  Contours are at

0.5°C intervals.

Figure 5.  Observed daily maximum and minimum temperatures at Jonesboro, (solid) and

Machias, (dotted) Maine during July 2005.
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Figure 6.  Lag correlation for daily maximum (solid) and minimum (open) temperature

mae (squares) and bias (circles) for a) Central New York (JF), b) southern New England

(JF), c) Central New York (JJA) and southern New England (JJA). Correlations above

the dashed horizontal line are significant (α = 0.05) assuming Gaussian data.

Figure 7. RUC 2m temperature analysis (contours) superimposed with a) minimum

temperatures at Cooperative Network stations in central New York (bold values) and b)

maximum temperatures at Cooperative Network stations in northern Virginia (bold

values).

Figure 8.  Minimum temperature mae at Cooperative Network stations in central New

York  (using IDWRUC) as a function of snow depth.
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Table 1.  List of interpolation analyses conducted.

Acronym Interpolation Method Data Remarks

MQRUC Multiquadric RUC initialization

IDWRUC Inverse distance* RUC initialization

MQobs Multiquadric Station observations Adjusted for elevation

IDWobs Inverse distance* Station observations Adjusted for elevation

MQnoelev Multiquadric RUC initialization Lapse rate adjustment omitted

MQTA Multiquadric  RUC initialization Terrain-based bias adjustment

* Distance is squared in the IDW procedures
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Table 2.  Average daily bias, mean absolute error (mae), and root mean square error

(rmse) by interpolation method for maximum and minimum temperature.  Bold values

are the smallest among the methods.

                Maximum Temperature          Minimum Temperature

Method Bias (°C) Mae (°C) Rmse (°C) Bias (°C) Mae(°C) Rmse (°C)

MQRUC -0.014 1.16 1.69 0.007 1.47 2.05

IDWRUC -0.018 1.08 1.57 0.014 1.37 1.90

MQnoelev -0.016 1.29 1.82 0.006 1.48 2.04

MQobs -0.016 1.15 1.68 0.010 1.49 2.09

IDWobs -0.062 1.14 1.64 -0.015 1.43 1.98
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 Table 3.  Comparison of average daily bias , mean absolute error (mae), and root mean

square error (rmse) during June, 2005  based on 20km and 40 km RUC analyses.

         Maximum Temperature            Minimum Temperature

Method Bias (°C) Mae (°C) Rmse (°C) Bias( °C) Mae(°C) Rmse (°C)

20 km MQRUC -0.047 1.16 1.72 -0.001 1.32 1.79

40 km MQRUC -0.025 1.33 1.87 0.007 1.41 1.90

20 km IDWRUC -0.030 1.03 1.50 0.024 1.20 1.64

40 km IDWRUC -0.045 1.21 1.72 0.005 1.28 1.73

20 km MQnoelev -0.049 1.30 1.85 -0.003 1.32 1.77

40 km MQnoelev -0.027 1.45 1.99 0.005 1.40 1.88

20 km MQTa –0.068 1.20 1.77 0.001 1.32 1.80

40 km MQTa –0.041 1.36 1.92 0.008 1.41 1.90
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Figure 1.  Coordinates of 40 km RUC grid points (black dots) and location of morning

observation time Cooperative Network Stations (gray circles).  The gray boxes highlight

subregions in which an analysis of the causes of large station errors was conducted.
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Figure 2.  Flow chart of RUC temperature interpolation procedure.  The numbers

correspond above each box refer to the sequence of steps referred to in the text.  The

panels to the left illustrate the interpolation steps.  The letter A denotes the a station

location.  Likewise the word bias is associated with the difference between the

interpolated RUC temperature and the observed temperature.  Thus, the word BIAS also

denotes station locations.  In the final pattern the letter T denotes the adjusted RUC

temperatures at each grid.
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Figure 4.  Average seasonal MQRUC interpolation errors for June, July and August

(JJA) minimum temperature.  Areas with absolute errors ≥ 1°C are shaded.  Contours

are at 0.5°C intervals.
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Figure 5.  Observed daily maximum and minimum temperatures at Jonesboro, (solid)

and Machias, (dotted) Maine during July 2005.
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Figure 6.  Lag correlation for daily maximum (solid) and minimum (open)

temperature mae (squares) and bias (circles) for a) Central New York (JF), b)

southern New England (JF), c) Central New York (JJA) and southern New England

(JJA). Correlations above the dashed horizontal line are significant (α = 0.05)

assuming Gaussian data.
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Figure 7. RUC 2m temperature analysis (contours) superimposed with a) minimum

temperatures at Cooperative Network stations in central New York (bold values) and b)

maximum temperatures at Cooperative Network stations in northern Virginia (bold

values).
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Figure 8.  Minimum temperature mae at Cooperative Network stations in central

New York (using MQRUC) as a function of snow depth.


