
Incorporating Interactive Compute

Environments into Web-Based Training

Materials using the

Cornell Job Runner Service

Aaron Birkland
apb18@cornell.edu
Consultant/Analyst

www.cac.cornell.edu

Cornell University Center for Advanced Computing (CAC)

Susan Mehringer
shm7@cornell.edu

CAC Assistant Director, Consulting

XSEDE Training Lead

Aaron and Lars

3/25/2016 www.cac.cornell.edu 2

Why?

3/25/2016 www.cac.cornell.edu 3

Traditionally, training materials and compute environments have been separate

entities. Students learn from online materials in one window, then log into a

new machine or session to try out new skills or concepts.

Accessing this second environment can impose obstacles such as

• Gaining access to the appropriate computer

• Learning to navigate a computer-specific login environment and file system

Goal: provide in-place realistic practice and experimentation

Requirements

3/25/2016 www.cac.cornell.edu 4

Develop a software toolkit that will enable the online educational developer to

design pages with these features:

• Embed a compute environment experience directly into web pages

• Try out commands and run jobs without obtaining an account or leaving the

web page

• Embedded environment should look, feel, and react like a typical HPC login

node / batch job

• The environment can be backed by real or virtual compute resources.

While we were working…

3/25/2016 www.cac.cornell.edu 5

IPython

Notebook

LinkSCEEM ISLET Geordi

Integrate into existing, mature training

documentation in the form of .html or .aspx files Yes Yes No Yes

Emulate the software stack and fundamental

HPC technologies (MPI, OpenMP, job

submission) of XSEDE resources such as

Stampede

Yes Yes Yes No

Allow users to do potentially dangerous things in

a secure fashion, such as compile and run C

code
No Yes Yes Yes

Support interaction paradigms ranging from a full

command line interface (shell), to clicking a

button to run a code snippet embedded on a

page
No No No No

Solution

3/25/2016 www.cac.cornell.edu 6

Using the Cornell Job Runner ServiceSM (CJRS), along with the toolkit,

we can embed a computing environment directly into web pages.

The CJRS toolkit can be used to configure different interactive modes.

We began with these three specific scenarios:

1. Linux console configured as a general login node

2. Form element that launches a pre-defined SLURM job

3. Guided session which allows the user to walk through pre-planned

steps of compiling, fixing, and running MPI code.

Architecture (CAC Contributions in red)

www.cac.cornell.edu

Shared

FS

Compute

Head

Compute

Compute

Compute

Execution

Context

Web

API

JS toolkit

Client web

browser

Web server

.html

servlet

Compute

Cluster

Demo 1:

Linux console configured as a general login node

3/25/2016 www.cac.cornell.edu 8

https://cvw.cac.cornell.edu/environment/commands.aspx

https://cvw.cac.cornell.edu/linux/exerciseShells.aspx

• Embed a simple, scrollable preformatted text box (representing the

console) in a web page

• The console displays the STDIN and STDOUT of any command that is

typed in

• Used to execute individual commands

• It is not a window to a real console, and it is not a terminal emulator

• At present cannot be used for activities that assume that the learner is at a

terminal, such as editing with vi

https://cvw.cac.cornell.edu/environment/commands.aspx
https://cvw.cac.cornell.edu/environment/commands.aspx
https://cvw.cac.cornell.edu/linux/exerciseShells.aspx

Demo 1:

Linux console configured as a general login node

3/25/2016 www.cac.cornell.edu 9

Demo 1: What just happened?

3/25/2016 www.cac.cornell.edu 10

• When “Launch a console” button is clicked, a SLURM interactive
session is requested via srun /bin/bash, which executes a bash

shell in a CJRS VM dedicated to Virtual Workshops.

• After typing text into the input box and pressing <ENTER>, this text
is POSTed to a special file .STDIN, and is interpreted by the bash

shell running on the VM.

• Any output (stdin or stdout) produced by the bash shell is directed to
a special file .CONSOLE, which the javascript toolkit displays in the

output text box.

Demo 2: Launch a pre-defined SLURM job

3/25/2016 www.cac.cornell.edu 11

https://cvw.cac.cornell.edu/cintro/functions.aspx

• Run any command or program on-the-fly

• E.g. execute a run that is dependent on changing input

• Can be used as building blocks to demonstrate a set of tasks.

• A web page can contain two or more independent forms.

• Two forms cannot execute at the same time (the first will be

disabled)

• The forms can be submitted any number of times, in any order.

https://cvw.cac.cornell.edu/cintro/functions.aspx
https://cvw.cac.cornell.edu/cintro/functions.aspx

Demo 2: Launch a pre-defined SLURM job

3/25/2016 www.cac.cornell.edu 12

Demo 2: What just happened?

3/25/2016 www.cac.cornell.edu 13

• When the “compile and run this code” button is pressed, the job

runner service creates a temporary working directory for the job, and
uploads two files: cexample.c and job.sh

– The content of cexample.c is the c code shown on screen.

– The content of job.sh is part of the html page in a hidden element

• A SLURM batch session is requested via sbatch job.sh. This

executes on the job runner VM.

• The job.sh batch file compiles cexample.c, runs it, and directs

its output to a file output.txt

• When the javascript client detects that output.txt has been

created, it unhides a specified html element and places the content
of output.txt in it, displaying it on the page.

Demo 3: Compile, edit, and run MPI

3/25/2016 www.cac.cornell.edu 14

https://cvw.cac.cornell.edu/mpi/exerciseinteractive.aspx

Guided session which allows the user to walk through pre-planned

steps of compiling, fixing, and running MPI code.

https://cvw.cac.cornell.edu/mpi/exerciseinteractive.aspx
https://cvw.cac.cornell.edu/mpi/exerciseinteractive.aspx

Demo 3: Compile, edit, and run MPI

3/25/2016 www.cac.cornell.edu 15

Demo 3: What just happened? (1 of 2)

3/25/2016 www.cac.cornell.edu 16

• When “Compile with mpicc” is clicked, a SLURM interactive session
with 4 parallel tasks is requested via srun –n 4 /bin/bash,

which executes a bash shell on the CJRS VM for Virtual Workshops

• The contents of the text box containing the MPI code is uploaded to
a file hello.c in the current working directory of the job

• A command is sent to the bash shell that compiles the code, and
directs any output to a file bad_compile.out

mpicc hello.c > bad_compile.out 2>&1.

• The MPI code on the page is set to edit-enabled

• The content of bad_compile.out is shown on the page.

Demo 3: What just happened? (2 of 2)

3/25/2016 www.cac.cornell.edu 17

• When the user edits the MPI code and clicks ‘Compile with mpicc’,
the contents of the text box replaces hello.c, and it is re-compiled

as before.

• When the content of bad_compile.out is empty (i.e. when it

compiles successfully without error), a new section of the page is
un-hidden which presents a text field for running mpiexec with

various arguments

• When a user types an mpiexec command and clicks ‘Run’, the

command is evaluated by the bash shell being run by srun, and

directed to mpi.out.

• The contents of mpi.out are shown in a text box on the page.

Security

3/25/2016 www.cac.cornell.edu 18

CJRS API can be configured to require an opaque “token” string which

can be passed to an external validation service. All other security is

external to the application:

• Network traffic can be secured via SSL, firewalls, or network traffic

routing rules

• Web pages can require authentication

• SLURM can be used to enforce time or resource limits

• Docker could be used to add a layer of security and limit resources

• CJRS jobs run at CAC execute as a single, unprivileged user on a

single virtual machine that is periodically terminated and relaunched

from it’s base image

CAC Implementation

3/25/2016 www.cac.cornell.edu 19

Intentionally designed to be light weight mechanism, leaving much of

the exposed capabilities and performance characteristics to the

environment in which it is deployed.

• Single virtual machine instance in Red Cloud, created from a master

image (can be destroyed and recreated at any time)

• The VM hosts the CJRS, the SLURM scheduler, and all job runs

• SLURM is configured with a one node queue, capable of running 32

scheduled tasks

• Configured with Open MPI

• All jobs run as a single unprivileged user

• Temporary home directory lasts for the duration of a single job

• It is responsive, cost-effective, and meets modest demand

Extensibility

3/25/2016 www.cac.cornell.edu 20

CJRS can be configured to use different JobExecutionService

implementations.

Some alternatives:

– Configure local execution service which executes one of a list of allowed

commands

– Configure SLURM to run on a cluster

– Use SLURM to dynamically launch and tear down needed cloud nodes

Future Development

3/25/2016 www.cac.cornell.edu 21

• Testing, testing, testing

• Harden applications

• Provide more realistic environment (ctrl-c?)

• Explore more usage scenarios

• Incorporate into more modules

• InCommon authentication

• Simplify content developer tools

• Explore container technologies (Docker) for distribution

• Share code

Contact Us

3/25/2016 www.cac.cornell.edu 22

Susan Mehringer

shm7@cornell.edu

Aaron Birkland

apb18@cornell.edu

Feedback from friendly testers welcome!

mailto:shm7@cornell.edu
mailto:apb18@cornell.edu

