
10/13/2009 www.cac.cornell.edu 1

Computational Steering

Nate Woody

Lab Materials

• I’ve placed some sample code in ~train100 that performs the
operations that I’ll demonstrate during this talk. We’ll walk through
how to use it later on, but let’s go ahead and grab it first.
– ssh trainxx@ranger.tacc.utexas.edu

• Move the zip file into your directory
– cp ~train100/compsteer.zip ~/compsteer.zip

• Unpack the zip
– unzip compsteer.zip

• You should then have the example that we’ll go through:
– py_steer/simple/rev0/
– Py_steer/gauss_steer/

10/13/2009 www.cac.cornell.edu 2

mailto:trainxx@ranger.tacc.utexas.edu

What is computational steering?

• Generally, computational steering can be thought of as a method (or
set of methods) for providing interactivity with an HPC program that
is running remotely.

• This is used to:
– Alter parameters in a running program
– Receive real-time information from an application
– Visualize the progress of an application

• The principal idea is to save cycles by directing an application
toward more productive areas of work or at a minimum stopping
unproductive work as early as possible.

10/13/2009 www.cac.cornell.edu 3

Types of Computational Steering

• We can think of a computer program as a map between parameter
space and a solution space. Given a set of inputs the application
moves through a trajectory in the solution space, and we are able to
interrogate and visualize this trajectory.

• Given this framework, we can group computational steering efforts
into two types:
– Type 1: We are primarily interested in exploring the parameter space.

By monitoring the trajectory, we can short-circuit the examination of
input parameters that appear to be leading away from our desired state
or revise our search strategy to more finely search an interesting area of
space.

– Type 2: We are looking for a particular solution and want to be able to
adjust parameters on the fly, to ensure that we arrive at the desired
result in the most efficient manner.

10/13/2009 www.cac.cornell.edu 4

Basic examples of steering

• Fail Fast (but gracefully)
– If you’re application produces periodic output, that output can probably

be examined to determine how the application is doing. If you
determine that you’re simulation has run astray, you could just cancel
the job to prevent further usage of resource.

– Executing a cancel job command will likely leave your application in an
unknown state, unless you have included some sort of a handler to
handle system-specific interupts that the system may pass. The periodic
output your application is producing may be left in a strange state and
you aren’t likely to get final output from your application.

– Implementing the steering that handles a stop command, will allow you
to terminate a job but still produce any desired output. Data output can
still be preserved for later examination of what went wrong w/o waiting
for the job to completely finish.

10/13/2009 www.cac.cornell.edu 5

Basic examples of steering

• Fancy checkpointing
– Steering can easily be implemented around a checkpoint iteration and

can be safely thought of as an upgraded form of checkpointing.
– Checkpointing provides output that can be used to re-start your

application given some sort of extreme failure.
– Steering provides the ability to do more than just serialize current data

structures at each of iteration. You can request a stop, or adjust
parameters, so that the checkpointing involves a read as well as simply
a dump.

– Steering can also be used to tweak the amount or type of data that the
application produces at each iteration. This allows you to filter the data
that is produced so that you can examine the application in as much
detail as you would like without producing all output all the time.

10/13/2009 www.cac.cornell.edu 6

Basic examples of steering

• Interactive processing
– The actual power of steering comes from applications that process data

according to a set of parameters that are set at input. Steering allows
you to alter those parameters to affect the ongoing simulation.

– Output data streams from the simulation are processed into “real-time”
visualization of the applications working. This real-time view of the
operation of the application allows rapid intervention by the user to
affect the application.

10/13/2009 www.cac.cornell.edu 7

You
Login Node

Application
Compute Node(s)

Parameter Changes

Output Stream

Approaches to steering

• DIY – it’s simple to add basic computational steering to an
application by taking advantage of a shared network file system.

• General Purpose Packages – Packages/libraries implement basic
communication structure that allows a client to communicate with a
running program and for the running program to provide
intermediate results to a (graphical or otherwise) client.

• Application specific packages – Packages that provide interactive
components that a user may stitch together to perform the desired
work.

10/13/2009 www.cac.cornell.edu 8

Basic Steering architecture

10/13/2009 www.cac.cornell.edu 9

Submission Host
(Steering client)

Master Node for
Parallel Job

Slave Node

Slave Node

SGESubmit
Job

Start
Job

Command Pipe

Status Pipe

Making an application steerable

• In the next few slides, we’ll demonstrate the functions neccesary to
add simple steering functionality to an existing app. We’ll do this
using simple Python functionality, but you can use any language you
feel comfortable with.

• We need the following functionality:
– A means of communicating between the running application and you (or

at least the steering client).
– A means for the running application to identify steerable parameters that

a steering client can change.
– Added application functionality to parse and respond to steering

commands from the steering client.

10/13/2009 www.cac.cornell.edu 10

Lab Materials

• I encourage you to follow along and play with the provided code as
it’s a little more informative about what is actually happening.

• ~/py_steer/simple/rev0 is the starting point and contains a fully
functional example that will allow you to run the steered application.

• There are two ways to run this code,
– Locally – which we’ll be doing, just create to login windows to ranger,

one will be the “compute-node” and one will be the “login-node”. The
compute node will be running the application, which you will be able to
control with the login-node.

– Batch – Modify the provided steer.sh file to create a Ranger batch file
that will submit a job that kicks off the application (app.py). This is how
you would actually do this in practice, but means we have to wait in the
queue.

10/13/2009 www.cac.cornell.edu 11

Steering an application

• Let’s look at how easy it is to add a simple steering mechanism to
an existing application using a shared file system. A means of
communcation then is simple a file.

• We’ll start out by the application setting up a properties file:

10/13/2009 www.cac.cornell.edu 12

def createSteerFile():
fid = open(STEER_FILE, 'w')
steerFile = Properties()
steerFile['stop'] = "0"
steerFile.store(fid)
fid.close()
return os.path.getmtime(STEER_FILE)

Steering an application

• Next we create functions to check the modify time of the file and to
read in the file:

10/13/2009 www.cac.cornell.edu 13

def checkSteerFile(steer_mod_time):
modTime = os.path.getmtime(STEER_FILE)
if (modTime != steer_mod_time):

return True
else:

return False

def readSteerFile():
fid = open(STEER_FILE,'r')
steerFile = Properties()
steerFile.load(fid)
fid.close()
return steerFile,os.path.getmtime(STEER_FILE)

Steering an application

• Finally, we add these to our main loop and add handling the steering
parameters

10/13/2009 www.cac.cornell.edu 14

def run():
modtime = createSteerFile()
while 1:
#do work
time.sleep(5)
if checkSteerFile(modtime):

print "Got New Steerage!"
p,modtime = readSteerFile()
if p['stop'] == "1":

sys.exit(0)
else:

print "No Steerage."

Interacting with an application

• This example is a trivial version of being able to feed input into an
application.

• It clearly extends to any parameters that you could wish to provide
and requires a minimal amount of work.

• However, the demonstrated application doesn’t provide any output
that the user could use to determine HOW to steer the client. We
can use the same principle of just supplying output to a file from the
app and managing that from the client.

• Some care should be taken to output the data into a format that is
easy to examine/display back at the headnode.

10/13/2009 www.cac.cornell.edu 15

Interacting with an application

• Add a couple of functions to create and write to an output file

• Add a hook in the working loop to call the write Function

10/13/2009 www.cac.cornell.edu 16

def createOutFile():
fid = open(OUT_FILE,'w')
fid.write("date\tx\ty")
fid.close()

def writeOutFile(vals):
n= datetime.datetime.today()
fid = open(OUT_FILE,'a')
fid.write("%s\t%s" % (n, vals))
fid.close()

def run():
while 1:

#do work
writeOutFile("%s\t%s\n" % (count, val))
if checkSteerFile(modtime)

...

Interacting with an application

• In this trivial example, we
outputted into something gnu
plot likes. Then we can just
periodically “replot” on the
headnode to watch the app
proceed and save the graph if
we would like:

gnuplot> set terminal png
gnuplot> set output ‘decay.png’
gnuplot> plot “App_nojob.out”

using 3:4 title ‘Output’
gnuplot> exit

10/13/2009 www.cac.cornell.edu 17

Interacting with an application

• Now we have all the pieces to actually do something interesting.
Let’s add a steerable parameters called “step”.

• This will now appear in the .steer file, and we can adjust it from
there. This parameter affects how fast we move along the x-axis.

10/13/2009 www.cac.cornell.edu 18

def createSteerFile():
fid = open(STEER_FILE,'w')
steerFile = Properties()
steerFile['stop'] = "0"
steerFile[‘step’] = “0.1”
steerFile.store(fid)
fid.close()
return os.path.getmtime(STEER_FILE)

Interacting with an application

10/13/2009 www.cac.cornell.edu 19

The step size is too
short in the beginning,
we notice and increase
it.

At some point, we
decrease the step
size again.

Interacting with an application

• This toy example demonstrates the principle of steering an
application and the last example hints at some powerful things that
can be done.

• A key example of this is to control the actual output of the program.
The toy example showed how to affect the program which was
reflected in the output. Another thing to do is to increase or
decrease the amount of output at each step.

• Collecting all the data for all the timestep in a simulation, may not
always be important, but it may be important for understanding
problems or unexpected results. Steering allows you the ability to
toggle how to the output of your application, so you don’t have “drink
from the firehose” in order to look at your simulation.

10/13/2009 www.cac.cornell.edu 20

Resolution/Drill Down Example

• In order to play, we can make a toy problem, where we’ll try and find
the maximum of a 2D surface.

• We can simulate a surface with a mixture of gaussians, which
makes a nice bumpy random surface to look at and is easily
amenable to a number of different algorithms.

• We’ll demonstrate a simple drive-able grid search, where we can
specify the location and detail of the area that we will search.

• Parameters:
– Xcenter and ycenter = the center of the area that we’ll search
– Extent = how far to extend our search in all directions
– Step = the fineness of our grid

10/13/2009 www.cac.cornell.edu 21

Example Grid Search Data

• Naïve algorithm that will repeatedly iterate through full grid with
increasing resolution until the discovered maximum stop increasing
(with some threshold).

10/13/2009 www.cac.cornell.edu 22

Interacting with an application

• Now we have all the pieces to actually do something interesting.
Let’s add some steerable parameters.

• This will now appear in the .steer file when the job starts and we will
be able to drive how the application operates.

10/13/2009 www.cac.cornell.edu 23

def createSteerFile():
fid = open(STEER_FILE,'w')
steerFile = Properties()
steerFile['stop'] = "0“
steerFile[‘xcenter’] = “10”
steerFile[‘ycenter’] = “10”
steerFile[‘res’] = “0.1”
steerFile.store(fid)
fid.close()
return os.path.getmtime(STEER_FILE)

Interacting with the application

10/13/2009 www.cac.cornell.edu 24

Starting with the initial
low resolution search
of the entire surface,
we can look at areas
of interest.

Drill down to
specific
regions

Interacting with an application

• Consider a simulation that produces particle tracking simulation data
through time steps. Most any sort of dynamics code will do.

• Invariably, this code already has the functionality to dump out
coordinate/property data for any given timestep. We can utilize this in a
couple of different ways.

• Add a steerable “steptimeoutput” parameter that would change how often
the entire coordinate data would be outputted to a file. You would then
need to visualize this data (again, code which may already exist).

• Another alternative is too look at a subset of that data. Add a steerable
parameter that affects how many particles, our the edge of a boundary box
that you would like output. You can grow or shrink the boundary box to
ensure that conditions are satisfactory w/o needing to save all the data.

10/13/2009 www.cac.cornell.edu 25

Steering Toolkits

• The previous examples were meant to demonstrate how steering
can help you and to make sure that it was clear that there is no
magic involved. Steering does not need to complicated and can
easily be engineered into existing code with a potentially high level
of benefit.

• However, toolkits do exist that provide a lot of functionality that
would be more difficult to code on your own. These toolkits range
from libraries that implement nice versions of what I’ve just shown
here to application-area specific codes that are designed to be run
as shown.

• I’ll highlight two of these applications that are well-developed and
may serve you’re needs.

10/13/2009 www.cac.cornell.edu 26

Reality Grid Steering Toolkit

• RealityGrid is a large-ish EU project for developing grid middleware
and applications to ease the use of HPC resource.

This refers to an ambitious and exciting global effort to develop an
environment in which individual users can access computers, databases

and experimental facilities simply and transparently, without having to
consider where those facilities are located. Using grid technology to closely
couple high throughput experimentation and visualisation, RealityGrid has
led the way in showing how close we are to realising this new computing

paradigm today.
[http://www.realitygrid.org]

10/13/2009 www.cac.cornell.edu 27

RealityGrid Steering Toolkit

• C, C++, and Fortran wrappers to
communication and I/O
functionality.

• Allows the steering connection via
file or sockets (SOAP).

• Visualization is basically a data-
sink that must display the data
appropriately.

• Is based on the process of having
existing code that you would like
to “instrument” to add steering
capability to.

10/13/2009 www.cac.cornell.edu 28

RealityGrid Steering Toolkit

• Adding RealityGrid to an existing project
– The idea of this toolkit is to integrate the steering library into an existing

application to gain steering ability.
– The toolkit is a library providing communication and I/O functionality

accessible by adding the appropriate function calls to your application
and re-compiling against the appropriate libs.

– The application (the MPI code you run on the compute node), will need
to register the steerable parameters at start-up and then periodically
check to see if a client has registered and passed commands.

– The client (a new piece of code you’ll have to write), needs to look for
steerable applications and then pass commands to it.

– The visualization component (which could be the client), needs to
accept/read I/O streams from the application.

10/13/2009 www.cac.cornell.edu 29

RealityGrid Steering Toolkit - App

10/13/2009 www.cac.cornell.edu 30

Download at:
http://www.rcs.manchester.ac.uk/research/realitygrid/downloads?action=AttachFile&

do=get&target=steer_lib-2.0.tgz

See mini_app.c

http://www.rcs.manchester.ac.uk/research/realitygrid/downloads?action=AttachFile&do=get&target=steer_lib-2.0.tgz
http://www.rcs.manchester.ac.uk/research/realitygrid/downloads?action=AttachFile&do=get&target=steer_lib-2.0.tgz

RealityGrid Steering Toolkit - client

Download at:
http://www.rcs.manchester.ac.uk/research/realitygrid/downloads?action=Attach

File&do=get&target=steer_lib-2.0.tgz

See mini_steerer.c

10/13/2009 www.cac.cornell.edu 31

http://www.rcs.manchester.ac.uk/research/realitygrid/downloads?action=AttachFile&do=get&target=steer_lib-2.0.tgz
http://www.rcs.manchester.ac.uk/research/realitygrid/downloads?action=AttachFile&do=get&target=steer_lib-2.0.tgz

Cactus Code

• Cactus describes itself as a problem solving environment and is a
fully-developed set of code.

• Cactus is organized where functionality is arranged into objects
called ‘thorns’. The idea is that you can assemble the thorns that
you need into an application (as well as write new thorns for
functionality not provided). Cactus then manages the
communication between the thorns and automatically exposes
steerable parameters and I/O pipes for visualization.

• Cactus is principally written for solving Numerical Relativity
problems and the available thorns reflect this. For people doing this
kind of research, Cactus is absolutely the way to go.

10/13/2009 www.cac.cornell.edu 32

Cactus Code

• Another nice feature of Cactus is that integrates seamlessly with a number
of visualization utilities. Most toolkits provide an I/O stream that you can
code to, or at most utilities to create common file formats (HDF, etc).
Cactus provides much better integration directly into a number of
visualization tools, and allows interactivity all the way back into visualization.

• The learning curve for Cactus is rather steep. If the functionality that you
need is not provided by available thorns, you should expect to spend some
time learning the Cactus interface and how things tie together. It may also
not be trivial to identify and assemble the thorns that you do need.

• Cactus is much more of a package and less of a toolkit to add to existing
code. This is good and bad. Vastly more functionality is provided by
Cactus than just about anything else there, but there is a complexity price to
be paid.

10/13/2009 www.cac.cornell.edu 33

Steering Summary

• The goal of this talk was to introduce and discuss what
computational steering is and how it can be used.

• It can be trivial to introduce very lightweight steering components
into your application that can provide real benefits for understanding
what your application is doing. It is simply not acceptable to have a
day+ long job produce bad results that COULD be detected in the
first 4 hours of the job.

• The key aspect of steering for data analysis is to be able to observe
what your application is doing in near real-time instead of operating
completely as a batch operation.

10/13/2009 www.cac.cornell.edu 34

	Computational Steering
	Lab Materials
	What is computational steering?
	Types of Computational Steering	
	Basic examples of steering
	Basic examples of steering
	Basic examples of steering
	Approaches to steering
	Basic Steering architecture
	Making an application steerable
	Lab Materials
	Steering an application
	Steering an application
	Steering an application
	Interacting with an application
	Interacting with an application
	Interacting with an application
	Interacting with an application
	Interacting with an application
	Interacting with an application
	Resolution/Drill Down Example
	Example Grid Search Data
	Interacting with an application
	Interacting with the application
	Interacting with an application
	Steering Toolkits
	Reality Grid Steering Toolkit
	RealityGrid Steering Toolkit
	RealityGrid Steering Toolkit	
	RealityGrid Steering Toolkit - App
	RealityGrid Steering Toolkit - client
	Cactus Code
	Cactus Code
	Steering Summary

