
Programming OpenMP

Susan Mehringer
Cornell Center for Advanced Computing

Based on materials developed CAC and TACC

7/13/2010 www.cac.cornell.edu 2

Overview

• Parallel processing
– MPP vs. SMP platforms MPP = Massively Parallel Processing
– Motivations for parallelization SMP = Symmetric MultiProcessing

• What is OpenMP?
• How does OpenMP work?

– Architecture
– Fork-join model of parallelism
– Communication

• OpenMP constructs
– Directives
– Runtime Library API
– Environment variables

7/13/2010 www.cac.cornell.edu 3

MPP platforms

Local Memory

Interconnect

Processors

• Clusters are distributed memory platforms in which each processor
has its own local memory; use MPI on these systems.

…
…

…

7/13/2010 www.cac.cornell.edu 4

SMP platforms

• In each Ranger node, the 16 cores share access to a common pool
of memory; likewise for the 8 cores in each node of CAC’s v4 cluster

Shared
Memory
Banks

Memory
Interface

Processors
…

…

7/13/2010 www.cac.cornell.edu 5

What is OpenMP?

• De facto open standard for scientific parallel programming
on Symmetric MultiProcessor (SMP) systems
– Allows fine-grained (e.g., loop-level) and coarse-grained parallelization
– Can express both data and task parallelism

• Implemented by:
– Compiler directives
– Runtime library (an API, Application Program Interface)
– Environment variables

• Standard specifies Fortran and C/C++ directives and API
• Runs on many different SMP platforms
• Find tutorials and description at http://www.openmp.org/

http://www.openmp.org/

7/13/2010 www.cac.cornell.edu 6

Advantages/disadvantages of OpenMP

• Pros
– Shared Memory Parallelism is easier to learn
– Parallelization can be incremental
– Coarse-grained or fine-grained parallelism
– Widely available, portable

• Cons
– Scalability limited by memory architecture
– Available on SMP systems only

• Benefits
Helps prevent CPUs from going idle on multi-core machines
Enables faster processing of large-memory jobs

7/13/2010 www.cac.cornell.edu 7

Threads in operating system

OpenMP architecture

Application User

Runtime library

Compiler directives Environment variables

7/13/2010 www.cac.cornell.edu 8

OpenMP fork-join parallelism

• Parallel regions are basic “blocks” within code
• A master thread is instantiated at run time and persists throughout

execution
• The master thread assembles teams of threads at parallel regions

master thread

parallel region parallel region parallel region

7/13/2010 www.cac.cornell.edu 9

How do threads communicate?

• Every thread has access to “global” memory (shared) and its own
stack memory (private)

• Use shared memory to communicate between threads

• Simultaneous updates to shared memory can create a race
condition: the results change with different thread scheduling

• Use mutual exclusion to avoid race conditions
– But understand that “mutex” serializes performance wherever it is used
– By definition only one thread at a time can execute that section of code

7/13/2010 www.cac.cornell.edu 10

OpenMP constructs

OpenMP language
extensions

parallel control
structures

data
environment

synchron-
ization

• governs flow of
control in the
program

parallel directive

• specifies
variables as
shared or private

shared and
private
clauses

• coordinates
thread execution

critical and
atomic directives
barrier directive

work sharing

• distributes work
among threads

do/parallel do
and section
directives

runtime functions,
environment

variables

• sets runtime environment

omp_set_num_threads()
omp_get_thread_num()
OMP_NUM_THREADS
OMP_SCHEDULE

7/13/2010 www.cac.cornell.edu 11

OpenMP directives

• OpenMP directives are comments in source code that specify
parallelism for shared-memory (SMP) machines

• FORTRAN compiler directives begin with one of the sentinels
!OMP, COMP, or *$OMP – use !$OMP for free-format F90

• C/C++ compiler directives begin with the sentinel #pragma omp

!$OMP parallel
...

!$OMP end parallel

!$OMP parallel do
DO ...

!$OMP end parallel do

pragma omp parallel
{...}

pragma omp parallel
for

for(...){...}

Fortran C/C++

7/13/2010 www.cac.cornell.edu 12

Directives and clauses

• Parallel regions are marked by the parallel directive
• Work-sharing loops are marked by

– parallel do directive in Fortran
– parallel for directive in C

• Clauses control the behavior of a particular OpenMP directive
1. Data scoping (Private, Shared, Default)
2. Schedule (Guided, Static, Dynamic, etc.)
3. Initialization (e.g., COPYIN, FIRSTPRIVATE)
4. Whether to parallelize a region or not (if-clause)
5. Number of threads used (NUM_THREADS)

7/13/2010 www.cac.cornell.edu 13

Parallel region and work sharing

Use OpenMP directives to specify Parallel Region and
Work Sharing constructs

Parallel

End Parallel

Code block Each Thread Executes:
DO Work Sharing
SECTIONS Work Sharing
SINGLE One Thread
CRITICAL One Thread at a Time

Parallel DO/for
Parallel SECTIONS

Stand-alone
parallel constructs

7/13/2010 www.cac.cornell.edu 15

1 !$OMP PARALLEL
2 code block
3 call work(...)
4 !$OMP END PARALLEL

Line 1 Team of threads is formed at parallel region
Lines 2-3 Each thread executes code block and subroutine call,

no branching into or out of a parallel region
Line 4 All threads synchronize at end of parallel region

(implied barrier)

Parallel regions

7/13/2010 www.cac.cornell.edu 16

Parallel Work (linear scaling)
Lab Example 1

0
1
2
3
4
5
6

0 1 2 3 4 5 6

CPUs

Sp
ee

du
p

Parallel Work (Times)
Lab Example 1

0.00

0.02

0.04

0.06

0.08

0 1 2 3 4 5 6

CPUs

Ti
m

e
(s

ec
.)

If work is completely
parallel, scaling is linear

Speedup =
cputime(1) / cputime(N)

Parallel work example

7/13/2010 www.cac.cornell.edu 17

1 !$OMP PARALLEL DO
2 do i=1,N
3 a(i) = b(i) + c(i) !not much work
4 enddo
5 !$OMP END PARALLEL DO

Line 1 Team of threads is formed at parallel region
Lines 2-4 Loop iterations are split among threads, each loop

iteration must be independent of other iterations
Line 5 (Optional) end of parallel loop (implied barrier at

enddo)

Work sharing

7/13/2010 www.cac.cornell.edu 18

Scheduling, memory
contention and overhead
can impact speedup

Speedup =
cputime(1) / cputime(N)

Work-sharing example

Work-Sharing on Production System
Lab Example 2

0

2

4

6

8

10

0 2 4 6 8

Threads

Sp
ee

du
p

Series1
Series2

Work-Sharing on Production System
(Lab Example 2)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 1 2 3 4 5 6 7 8 9

CPUs

Ti
m

e
(s

ec
.)

Actual
Ideal

7/13/2010 www.cac.cornell.edu 19

Overhead for Parallel Team (-O3, -qarch/tune=pwr4)

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20

Threads

Cl
oc

k
P

er
io

ds
 (1

.3
G

Hz
 P

69
0)

parallel
parallel_do

Example from Champion (IBM system)

Team overhead

• Increases roughly linearly with number of threads

7/13/2010 www.cac.cornell.edu 20

• Replicated : executed by all threads
• Work sharing : divided among threads

PARALLEL
{code}

END PARALLEL

PARALLEL DO
do I = 1,N*4

{code}
end do

END PARALLEL DO

PARALLEL
{code1}

DO
do I = 1,N*4

{code2}
end do

{code3}
END PARALLEL

code code code code
I=N+1,2N
code

I=2N+1,3N
code

I=3N+1,4N
code

I=1,N
code

code1 code1 code1code1

I=N+1,2N
code2

I=2N+1,3N
code2

I=3N+1,4N
code2

I=1,N
code2

code3 code3 code3code3

Work sharing Combined

OpenMP parallel constructs

Replicated

7/13/2010 www.cac.cornell.edu 21

The !$OMP PARALLEL directive declares an entire region as parallel;
therefore, merging work-sharing constructs into a single parallel region
eliminates the overhead of separate team formations

!$OMP PARALLEL
!$OMP DO

do i=1,n
a(i)=b(i)+c(i)

enddo
!$OMP END DO
!$OMP DO

do i=1,m
x(i)=y(i)+z(i)

enddo
!$OMP END DO

!$OMP END PARALLEL

!$OMP PARALLEL DO
do i=1,n

a(i)=b(i)+c(i)
enddo

!$OMP END PARALLEL DO
!$OMP PARALLEL DO

do i=1,m
x(i)=y(i)+z(i)

enddo
!$OMP END PARALLEL DO

Merging parallel regions

7/13/2010 www.cac.cornell.edu 22

Distribution of work: SCHEDULE clause

• !$OMP PARALLEL DO SCHEDULE(STATIC)
– Default schedule: each CPU receives one set of contiguous iterations
– Size of set is ~ (total_no_iterations /no_of_cpus)

• !$OMP PARALLEL DO SCHEDULE(STATIC,N)
– Iterations are divided round-robin fashion in chunks of size N

• !$OMP PARALLEL DO SCHEDULE(DYNAMIC,N)
– Iterations handed out in chunks of size N as threads become available

• !$OMP PARALLEL DO SCHEDULE(GUIDED,N)
– Iterations handed out in pieces of exponentially decreasing size
– N = minimum number of iterations to dispatch each time (default is 1)
– Can be useful for load balancing (“fill in the cracks”)

7/13/2010 www.cac.cornell.edu 23

OpenMP data scoping

• Data-scoping clauses control how variables are shared within a
parallel construct

• These include the shared, private, firstprivate,
lastprivate, reduction clauses

• Default variable scope:
– Variables are shared by default
– Global variables are shared by default
– Automatic variables within a subroutine that is called from inside a

parallel region are private (reside on a stack private to each thread),
unless scoped otherwise

– Default scoping rule can be changed with default clause

7/13/2010 www.cac.cornell.edu 24

PRIVATE and SHARED data

• SHARED - Variable is shared (seen) by all processors
• PRIVATE - Each thread has a private instance (copy) of the

variable
• Defaults: loop indices are private, other variables are shared

!$OMP PARALLEL DO
do i=1,N

A(i) = B(i) + C(i)
enddo

!$OMP END PARALLEL DO

• All threads have access to the same storage areas for A, B, C, and
N, but each loop has its own private copy of the loop index, i.

7/13/2010 www.cac.cornell.edu 25

PRIVATE data example

• In the following loop, each thread needs a PRIVATE copy of temp
– The result would be unpredictable if temp were shared, because each

processor would be writing and reading to/from the same location

!$OMP PARALLEL DO SHARED(A,B,C,N) PRIVATE(temp,i)
do i=1,N

temp = A(i)/B(i)
C(i) = temp + cos(temp)

enddo
!$OMP END PARALLEL DO

– A “lastprivate(temp)” clause will copy the last loop (stack) value of temp
to the (global) temp storage when the parallel DO is complete

– A “firstprivate(temp)” initializes each thread’s temp to the global value

7/13/2010 www.cac.cornell.edu 26

REDUCTION

• An operation that “combines” multiple elements to form a single
result, such as a summation, is called a reduction operation

!$OMP PARALLEL DO REDUCTION(+:asum) REDUCTION(*:aprod)
do i=1,N

asum = asum + a(i)
aprod = aprod * a(i)

enddo
!$OMP END PARALLEL DO

– Each thread has a private ASUM and APROD (declared as real*8, e.g.),
initialized to the operator’s identity, 0 & 1, respectively

– After the loop execution, the master thread collects the private values of
each thread and finishes the (global) reduction

7/13/2010 www.cac.cornell.edu 27

• When a work-sharing
region is exited, a barrier
is implied – all threads
must reach the barrier
before any can proceed

• By using the NOWAIT
clause at the end of each
loop inside the parallel
region, an unnecessary
synchronization of threads
can be avoided

!$OMP PARALLEL
!$OMP DO

do i=1,n
work(i)

enddo
!$OMP END DO NOWAIT
!$OMP DO schedule(dynamic,M)

do i=1,m
x(i)=y(i)+z(i)

enddo
!$OMP END
!$OMP END PARALLEL

NOWAIT

7/13/2010 www.cac.cornell.edu 28

!$OMP PARALLEL SHARED(sum,X,Y)
...
!$OMP CRITICAL

call update(x)
call update(y)
sum=sum+1

!$OMP END CRITICAL
...
!$OMP END PARALLEL

!$OMP PARALLEL SHARED(X,Y)
...
!$OMP ATOMIC

sum=sum+1
...
!$OMP END PARALLEL

Mutual exclusion: atomic and critical directives

• When threads must execute a section of code serially (only one
thread at a time can execute it), the region must be marked with
CRITICAL / END CRITICAL directives

• Use the “!$OMP ATOMIC” directive if executing only one operation

7/13/2010 www.cac.cornell.edu 29

call OMP_INIT_LOCK(maxlock)
!$OMP PARALLEL SHARED(X,Y)
...
call OMP_set_lock(maxlock)
call update(x)
call OMP_unset_lock(maxlock)
...
!$OMP END PARALLEL
call OMP_DESTROY_LOCK(maxlock)

Mutual exclusion: lock routines

• When each thread must execute a section of code serially (only one
thread at a time can execute it), locks provide a more flexible way of
ensuring serial access than CRITICAL and ATOMIC directives

7/13/2010 www.cac.cornell.edu 30

Open MP exclusion routine/directive cycles

OMP_SET_LOCK/OMP_UNSET_LOCK 330

OMP_ATOMIC 480

OMP_CRITICAL 510

All measurements were made in dedicated mode

Overhead associated with mutual exclusion

7/13/2010 www.cac.cornell.edu 31

omp_get_num_threads() Number of threads in current team

omp_get_thread_num() Thread ID, {0: N-1}

omp_get_max_threads() Number of threads in environment

omp_get_num_procs() Number of machine CPUs

omp_in_parallel() True if in parallel region & multiple threads
executing

omp_set_num_threads(#) Changes number of threads for parallel region

Runtime library functions

7/13/2010 www.cac.cornell.edu 32

omp_set_dynamic() Set state of dynamic threading (true/false)

omp_get_dynamic() True if dynamic threading is on

OMP_NUM_THREADS Set to permitted number of threads

OMP_DYNAMIC TRUE/FALSE for enable/disable dynamic threading

More functions and variables

• To enable dynamic thread count (not dynamic scheduling!)

• To control the OpenMP runtime environment

7/13/2010 www.cac.cornell.edu 33

OpenMP 2.0/2.5: what’s new?

• Wallclock timers
• Workshare directive (Fortran 90/95)
• Reduction on array variables
• NUM_THREAD clause

7/13/2010 www.cac.cornell.edu 34

OpenMP wallclock timers

Real*8 :: omp_get_wtime, omp_get_wtick() (Fortran)
double omp_get_wtime(), omp_get_wtick(); (C)

double t0, t1, dt, res;
...
t0=omp_get_wtime();
<work>
t1=omp_get_wtime();
dt=t1-t0; res=1.0/omp_get_wtick();
printf(“Elapsed time = %lf\n”,dt);
printf(“clock resolution = %lf\n”,res);

7/13/2010 www.cac.cornell.edu 35

References

• Current standard
– http://www.openmp.org/

• Books
– Parallel Programming in OpenMP, by Chandra,Dagum, Kohr, Maydan,

McDonald, Menon
– Using OpenMP, by Chapman, Jost, Van der Pas (OpenMP 2.5)

• Virtual Workshop Module
– https://www.cac.cornell.edu/Ranger/OpenMP/

http://www.openmp.org/
https://www.cac.cornell.edu/Ranger/OpenMP/

	Programming OpenMP
	Overview
	MPP platforms
	SMP platforms
	What is OpenMP?
	Advantages/disadvantages of OpenMP
	OpenMP architecture
	OpenMP fork-join parallelism
	How do threads communicate?
	OpenMP constructs
	OpenMP directives
	Directives and clauses
	Parallel region and work sharing
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Distribution of work: SCHEDULE clause
	OpenMP data scoping
	PRIVATE and SHARED data
	PRIVATE data example
	REDUCTION
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	OpenMP wallclock timers
	References

