
Programming OpenMP

Susan Mehringer
Cornell Center for Advanced Computing

Based on materials developed CAC and TACC



7/13/2010 www.cac.cornell.edu 2

Overview

• Parallel processing
– MPP vs. SMP platforms MPP = Massively Parallel Processing
– Motivations for parallelization SMP = Symmetric MultiProcessing

• What is OpenMP?
• How does OpenMP work?

– Architecture
– Fork-join model of parallelism
– Communication

• OpenMP constructs
– Directives
– Runtime Library API
– Environment variables
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MPP platforms

Local Memory

Interconnect

Processors

• Clusters are distributed memory platforms in which each processor 
has its own local memory; use MPI on these systems.

…
…

…
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SMP platforms

• In each Ranger node, the 16 cores share access to a common pool 
of memory; likewise for the 8 cores in each node of CAC’s v4 cluster

Shared 
Memory
Banks

Memory 
Interface

Processors
…

…
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What is OpenMP?

• De facto open standard for scientific parallel programming
on Symmetric MultiProcessor (SMP) systems
– Allows fine-grained (e.g., loop-level) and coarse-grained parallelization
– Can express both data and task parallelism

• Implemented by:
– Compiler directives
– Runtime library (an API, Application Program Interface)
– Environment variables

• Standard specifies Fortran and C/C++ directives and API
• Runs on many different SMP platforms
• Find tutorials and description at http://www.openmp.org/

http://www.openmp.org/
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Advantages/disadvantages of OpenMP

• Pros
– Shared Memory Parallelism is easier to learn
– Parallelization can be incremental 
– Coarse-grained or fine-grained parallelism
– Widely available, portable

• Cons
– Scalability limited by memory architecture
– Available on SMP systems only

• Benefits
Helps prevent CPUs from going idle on multi-core machines
Enables faster processing of large-memory jobs
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Threads in operating system

OpenMP architecture

Application User

Runtime library

Compiler directives Environment variables
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OpenMP fork-join parallelism

• Parallel regions are basic “blocks” within code
• A master thread is instantiated at run time and persists throughout 

execution
• The master thread assembles teams of threads at parallel regions

master thread

parallel region parallel region parallel region
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How do threads communicate?

• Every thread has access to “global” memory (shared) and its own 
stack memory (private)

• Use shared memory to communicate between threads

• Simultaneous updates to shared memory can create a race 
condition: the results change with different thread scheduling

• Use mutual exclusion to avoid race conditions
– But understand that “mutex” serializes performance wherever it is used
– By definition only one thread at a time can execute that section of code
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OpenMP constructs

OpenMP language 
extensions

parallel control
structures

data 
environment

synchron-
ization

• governs flow of 
control in the 
program

parallel directive

• specifies
variables as 
shared or private

shared and
private
clauses

• coordinates
thread execution

critical and
atomic directives
barrier directive

work sharing

• distributes work 
among threads

do/parallel do 
and section
directives

runtime functions, 
environment

variables

• sets runtime environment

omp_set_num_threads()
omp_get_thread_num()
OMP_NUM_THREADS
OMP_SCHEDULE
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OpenMP directives

• OpenMP directives are comments in source code that specify 
parallelism for shared-memory (SMP) machines

• FORTRAN compiler directives begin with one of the sentinels 
!$OMP, C$OMP, or *$OMP – use !$OMP for free-format F90

• C/C++ compiler directives begin with the sentinel  #pragma omp

!$OMP parallel
...

!$OMP end parallel

!$OMP parallel do
DO ...

!$OMP end parallel do

# pragma omp parallel
{...}

# pragma omp parallel 
for

for(...){...}

Fortran C/C++



7/13/2010 www.cac.cornell.edu 12

Directives and clauses

• Parallel regions are marked by the parallel directive
• Work-sharing loops are marked by

– parallel do directive in Fortran
– parallel for directive in C

• Clauses control the behavior of a particular OpenMP directive
1. Data scoping (Private, Shared, Default)
2. Schedule (Guided, Static, Dynamic, etc.)
3. Initialization (e.g., COPYIN, FIRSTPRIVATE)
4. Whether to parallelize a region or not (if-clause)
5. Number of threads used (NUM_THREADS)
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Parallel region and work sharing

Use OpenMP directives to specify Parallel Region and 
Work Sharing constructs

Parallel 

End Parallel

Code block Each Thread Executes:
DO     Work Sharing
SECTIONS Work Sharing
SINGLE One Thread
CRITICAL One Thread at a Time

Parallel DO/for
Parallel SECTIONS

Stand-alone
parallel constructs
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1  !$OMP PARALLEL
2       code block
3       call work(...)
4  !$OMP END PARALLEL

Line 1 Team of threads is formed at parallel region
Lines 2-3 Each thread executes code block and subroutine call, 

no branching into or out of a parallel region
Line 4 All threads synchronize at end of parallel region 

(implied barrier)

Parallel regions
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Parallel Work (linear scaling)
Lab Example 1
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If work is completely
parallel, scaling is linear

Speedup = 
cputime(1) / cputime(N)

Parallel work example
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1 !$OMP PARALLEL DO
2        do i=1,N
3           a(i) = b(i) + c(i)  !not much work
4        enddo
5 !$OMP END PARALLEL DO

Line 1 Team of threads is formed at parallel region
Lines 2-4 Loop iterations are split among threads, each loop 

iteration must be independent of other iterations
Line 5 (Optional) end of parallel loop (implied barrier at 

enddo)

Work sharing
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Scheduling, memory
contention and overhead
can impact speedup

Speedup = 
cputime(1) / cputime(N)

Work-sharing example

Work-Sharing on Production System
Lab Example 2
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Overhead for Parallel Team (-O3, -qarch/tune=pwr4)
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Example from Champion (IBM system)

Team overhead

• Increases roughly linearly with number of threads
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• Replicated      : executed by all threads
• Work sharing : divided among threads

PARALLEL
{code}

END PARALLEL

PARALLEL DO
do I = 1,N*4

{code}
end do

END PARALLEL DO

PARALLEL
{code1}

DO
do I = 1,N*4

{code2}
end do

{code3}
END PARALLEL

code code code code
I=N+1,2N
code

I=2N+1,3N
code

I=3N+1,4N
code

I=1,N
code

code1 code1 code1code1

I=N+1,2N
code2

I=2N+1,3N
code2

I=3N+1,4N
code2

I=1,N
code2

code3 code3 code3code3

Work sharing Combined

OpenMP parallel constructs

Replicated
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The !$OMP PARALLEL directive declares an entire region as parallel; 
therefore, merging work-sharing constructs into a single parallel region 
eliminates the overhead of separate team formations

!$OMP PARALLEL
!$OMP DO

do i=1,n  
a(i)=b(i)+c(i)

enddo
!$OMP END DO
!$OMP DO

do i=1,m         
x(i)=y(i)+z(i)

enddo
!$OMP END DO

!$OMP END PARALLEL

!$OMP PARALLEL DO
do i=1,n

a(i)=b(i)+c(i)
enddo

!$OMP END PARALLEL DO
!$OMP PARALLEL DO

do i=1,m
x(i)=y(i)+z(i)

enddo
!$OMP END PARALLEL DO

Merging parallel regions



7/13/2010 www.cac.cornell.edu 22

Distribution of work: SCHEDULE clause

• !$OMP PARALLEL DO SCHEDULE(STATIC)
– Default schedule: each CPU receives one set of contiguous iterations     
– Size of set is ~ (total_no_iterations /no_of_cpus)

• !$OMP PARALLEL DO SCHEDULE(STATIC,N)
– Iterations are divided round-robin fashion in chunks of size N 

• !$OMP PARALLEL DO SCHEDULE(DYNAMIC,N)
– Iterations handed out in chunks of size N as threads become available

• !$OMP PARALLEL DO SCHEDULE(GUIDED,N)
– Iterations handed out in pieces of exponentially decreasing size 
– N = minimum number of iterations to dispatch each time (default is 1)
– Can be useful for load balancing (“fill in the cracks”)
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OpenMP data scoping

• Data-scoping clauses control how variables are shared within a 
parallel construct

• These include the shared, private, firstprivate, 
lastprivate, reduction clauses

• Default variable scope:
– Variables are shared by default
– Global variables are shared by default
– Automatic variables within a subroutine that is called from inside a 

parallel region are private (reside on a stack private to each thread), 
unless scoped otherwise

– Default scoping rule can be changed with default clause
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PRIVATE and SHARED data

• SHARED - Variable is shared (seen) by all processors
• PRIVATE - Each thread has a private instance (copy) of the 

variable
• Defaults: loop indices are private, other variables are shared

!$OMP PARALLEL DO
do i=1,N

A(i) = B(i) + C(i)
enddo

!$OMP END PARALLEL DO

• All threads have access to the same storage areas for A, B, C, and 
N, but each loop has its own private copy of the loop index, i.
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PRIVATE data example

• In the following loop, each thread needs a PRIVATE copy of temp
– The result would be unpredictable if temp were shared, because each 

processor would be writing and reading to/from the same location

!$OMP PARALLEL DO SHARED(A,B,C,N) PRIVATE(temp,i)
do i=1,N

temp = A(i)/B(i)
C(i) = temp + cos(temp)

enddo
!$OMP END PARALLEL DO

– A “lastprivate(temp)” clause will copy the last loop (stack) value of temp 
to the (global) temp storage when the parallel DO is complete

– A “firstprivate(temp)” initializes each thread’s temp to the global value
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REDUCTION

• An operation that “combines” multiple elements to form a single 
result, such as a summation, is called a reduction operation

!$OMP PARALLEL DO REDUCTION(+:asum) REDUCTION(*:aprod)
do i=1,N

asum  = asum  + a(i)
aprod = aprod * a(i)

enddo
!$OMP END PARALLEL DO

– Each thread has a private ASUM and APROD (declared as real*8, e.g.), 
initialized to the operator’s identity, 0 & 1, respectively

– After the loop execution, the master thread collects the private values of 
each thread and finishes the (global) reduction
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• When a work-sharing 
region is exited, a barrier 
is implied – all threads 
must reach the barrier 
before any can proceed

• By using the NOWAIT 
clause at the end of each 
loop inside the parallel 
region, an unnecessary 
synchronization of threads 
can be avoided

!$OMP PARALLEL
!$OMP DO

do i=1,n
work(i)

enddo
!$OMP END DO NOWAIT
!$OMP DO schedule(dynamic,M)

do i=1,m
x(i)=y(i)+z(i)

enddo
!$OMP END
!$OMP END PARALLEL

NOWAIT
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!$OMP PARALLEL SHARED(sum,X,Y)
...
!$OMP CRITICAL 

call update(x)
call update(y)
sum=sum+1

!$OMP END CRITICAL
...
!$OMP END PARALLEL

!$OMP PARALLEL SHARED(X,Y)
...
!$OMP ATOMIC

sum=sum+1
...
!$OMP END PARALLEL

Mutual exclusion: atomic and critical directives

• When threads must execute a section of code serially (only one 
thread at a time can execute it), the region must be marked with 
CRITICAL / END CRITICAL directives

• Use the “!$OMP ATOMIC” directive if executing only one operation
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call OMP_INIT_LOCK(maxlock)
!$OMP PARALLEL SHARED(X,Y)
...
call OMP_set_lock(maxlock)
call update(x)
call OMP_unset_lock(maxlock)
...
!$OMP END PARALLEL
call OMP_DESTROY_LOCK(maxlock)

Mutual exclusion: lock routines

• When each thread must execute a section of code serially (only one 
thread at a time can execute it), locks provide a more flexible way of 
ensuring serial access than CRITICAL and ATOMIC directives
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Open MP exclusion routine/directive cycles

OMP_SET_LOCK/OMP_UNSET_LOCK 330

OMP_ATOMIC 480

OMP_CRITICAL 510

All measurements were made in dedicated mode

Overhead associated with mutual exclusion
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omp_get_num_threads() Number of threads in current team

omp_get_thread_num() Thread ID, {0: N-1}

omp_get_max_threads() Number of threads in environment

omp_get_num_procs() Number of machine CPUs

omp_in_parallel() True if in parallel region & multiple threads 
executing

omp_set_num_threads(#) Changes number of threads for parallel region

Runtime library functions
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omp_set_dynamic() Set state of dynamic threading (true/false)

omp_get_dynamic() True if dynamic threading is on

OMP_NUM_THREADS Set to permitted number of threads

OMP_DYNAMIC TRUE/FALSE for enable/disable dynamic threading

More functions and variables

• To enable dynamic thread count (not dynamic scheduling!)

• To control the OpenMP runtime environment
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OpenMP 2.0/2.5: what’s new?

• Wallclock timers
• Workshare directive (Fortran 90/95)
• Reduction on array variables
• NUM_THREAD clause
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OpenMP wallclock timers

Real*8 :: omp_get_wtime, omp_get_wtick()    (Fortran)
double omp_get_wtime(), omp_get_wtick();    (C)

double t0, t1, dt, res;
...
t0=omp_get_wtime();
<work>
t1=omp_get_wtime();
dt=t1-t0; res=1.0/omp_get_wtick();
printf(“Elapsed time = %lf\n”,dt);
printf(“clock resolution = %lf\n”,res);
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References
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– http://www.openmp.org/
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– Parallel Programming in OpenMP, by Chandra,Dagum, Kohr, Maydan, 
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