
7/13/2010 www.cac.cornell.edu 1

Profiling and Debugging Labs

These labs notes are also available in the main slide
pack.

Lab 1 - Profiling

7/13/2010 www.cac.cornell.edu 2

• Included in the lab section is linpack.c which is a traditional tool for
measuring the performance of High Performance Computing
systems, but is also useful for looking at any computing system.

• The goal of this lab is to generate gprof output for this function.
• You will need to

– Compile this function with the appropriate options (standard build below)
$ gcc –DDP –DROLL –lm linpack.c –o linpac

– Run the program to get gmon.out output
– Run gprof to get the text-ified results
– Examine the output and identify the function that should most likely be

optimized to make linpack faster.
• Advanced users can fix take a look at timing substring.c and

figuring out how to make it less awful!

Lab 2 – Profiling (Optional)

• p2p_perf.c uses MPI_Wtime to get a accurate timer available in
jobs.

• The object of p2p_perf is to provide is to provide information about
latency and bandwidth characteristics of an interconnect. You can
learn something about latency by sending very small messages and
you can learn something about bandwidth by sending very large
messages.

1) Examine p2p_perf.c to see the use of MPI_Wtime use.
2) Compile p2p_perf using your preferred compiler
3) Write a batch script that will run p2p_perf to perform a ping-pong

between two different nodes. From the results, estimate the
maximum bandwidth that you are able to achieve on the Ranger
interconnect.

7/13/2010 www.cac.cornell.edu 3

Lab 3 - Debugging

• Example3.c is a buggy print mangler, that you will likely be able to
fix.

1) Compile example3.c
2) Execute example3 – it will segfault on you
3) Compile example3.c with debugging turned on
4) Start example3.c in the debugger so you can examine the

backtrace information.
5) Set a breakpoint at line 6, and step through the code until you can

find what happens.
6) Once you understand the problem, fix the offending line(s) and

recompile
If you get hungup, look in example3.fixed for some solutions.

7/13/2010 www.cac.cornell.edu 4

Lab 4 - DDT Lab

• The DDT Lab is a free-form opportunity to get DDT running.
• Open an SSH session with an X-tunnel to ranger.tacc.utexas.edu

and get the example code:
login3$ cp ~train00/ddt_debug/debug_code.f .

• Compile
login3% mpif90 –g –O0 debug_code.f –o ddt_app

• Load the DDT Module and run ddt
login3% module load ddt

login3% ddt ddt_app

7/13/2010 www.cac.cornell.edu 5

	Profiling and Debugging Labs
	Lab 1 - Profiling
	Lab 2 – Profiling (Optional)
	Lab 3 - Debugging
	Lab 4 - DDT Lab

