Performance Considerations:
Compilers, Optimization, Libraries

Lars Koesterke

Cornell University
Ithaca, NY

March 13, 2009

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Outline

. Introduction

. Compiler Options

. Performance Libraries
. Code Optimizations

1 General Optimization Procedure

Optimization in code design/development:

 Requires understanding of common
architecture features

 Requires sense of how compilers map

code to instructions. —»

]

TUNE MOST

Optimization Is an iterative process: TIME-INTENSIVE | S

SECTION

e Profile code !

e Work on most time intensive blocks -. o

» Repeat g -
PERFORMANCE

YES INCREASE NO

TRCC

1 Compiler Options

e Three important Categories
— Optimization Level
— Architecture Specification
— Interprocedural Optimization

You should always have at least one option from each category!

2 Compilers and Optimization

Compilers can perform significant optimization
— The compiler follows your lead!

— Structure code to make apparent what the compiler should do (so that
the compilers and others can understand it).

— Use simple language constructs (e.g. don’t use pointers, or OO code).

Use latest compilers.

— Always check compiler options
<compiler_command> --help {lists/explains options}

— Look for architecture options for your system
See User Guides — usually lists “best practice” options
cat /proc/cpuinfo {shows cpu information}

Experiment with different options.
May need routine-specific options (use -ipo).

TRCC

Optimization Level: —On

-O0 no optimization: Fast compilation, disables
optimization

-O1 optimize for speed, but disables optimizations
which increase code size

-O2 default optimization

-O3 aggressive optimization: rearrangement of code,
l.e. scalar replacement, loop transformation.

Compile time/space intensive and/or marginal
effectiveness; may change code semantics and results
(sometimes even breaks codes!)

TRCC

Optimization Levels

e Operations performed at default optimization
level
— Instruction rescheduling
— COpy propagation
— software pipelining
— common subexpression elimination
— prefetching, (some loop transformations)

e Operations performed at aggressive
optimization levels

— Usually enabled by —O3
— more aggressive prefetching, loop transformations

TRCC

Architecture Specification

X87 instruction sets are now replaced by SSE “Vector” instruction sets.
(S)SSE = (Supplemental) Streaming SIMD Extension
SSE instructions sets are chip dependent

(SSE instructions pipeline and simultaneously execute independent
operations to get multiple results per clock period.)

The —x<codes> { code =W, P, T, O, S} directs the compiler to use most
advanced SSE instruction set for the target hardware.

Architecture Specification

Intel (SSSE is for Intel chips only!)

Processor-specific optimization options (all do SSE and SSE?2):
-XT includes SSE3 & SSSE3 instructions for EM64T (Lonestar, v. 10.1)
-XW no supplemental Instructions (Ranger, v. 10.1)
-XO includes SSE3 Instructions (Ranger, v. 10.1)

PGI

-tp barcelona-64 uses instruction set for barcelona chip

TRCC

Interprocedural Optimization (I1P)

« Most compilers will handle IP within a single file (option —Ip)

e The Intel -ipo compiler option does more
It adds additional information to each object file.

Then, during loading, the code is recompiled and IP among ALL objects is
performed.

May take much more time: Code is recompiled during linking
It is Important to include options in link command (-ipo —O# -xW, etc.)
(special Intel xild loader replaces Id)

When archiving in a library, you must use xiar, instead of ar.

Interprocedural Optimization (I1P)

enable single-file interprocedural (IP) optimizations
(within files). Line numbers produced for debugging

enable multi-file IP optimizations (between files)

-Mipa=fast,inline Interprocedural Optimization

Other Intel Compiler Options

Other options:
-0 debugging information, generates symbol table
-vec_report[#] {#=0-5}, controls vector diagnostic reporting
-C enable extensive runtime error checking (-CA, -CB, -CS,
-CU, -CV)
-convert <kwd> specify file format
keyword: big_endian, cray, ibm, little_endian, native,
vaxd

-openmp enable the parallelizer to generate multi-threaded code
based on the OpenMP directives.

-openmp_report controls level of diagnostic reporting

-Static create a static executable for serial applications. MPI
applications compiled on Lonestar cannot be built
statically.

TRCC

Other PGI Compiler Options

Processor-specific optimization options:
-fast -O2 -Munroll=c:1 -Mnoframe -Mire -Mautoinline
-Mvect=sse -Mscalarsse -Mcache_align -Mflushz

-mp thread generation for OpenMP directives
-Minfo=mp,ipa OpenMP/Interprocedural Opt. reporting

Compilers - Best Practice

Normal compiling for Ranger

Intel icc/ifort -O3 -ipo -xW prog.c/cc/f90
pgi pgcc/pgcpp/pgfo9s -fast-tp barcelona-64

-Mipa=fast,inline
prog.c/cc/f90

gnu gcc -mtune=barcelona -march=barcelona

prog.c
O2 is default opt, compile with —OO0 if this breaks (very rare)

The effects of -xW and -xO options may vary

Don’t include debuig options for a production compile!
ifort —-O2 —g —CB test.c

TRCC

3 Performance Libraries

Optimized for specific architectures

Use library routines instead of hand-coding your own
In “hot spots”, never write library functions by hand.

Offered by different vendors (ESSL/PESSL on IBM systems,
Cray libsci for Cray
systems, SCSL for SGI)

Numerical Recipes books DO NOT provide optimized code.
(Libraries can be 100x faster).

Linux x86-64 (Lonestar/Ranger)
Libraries - 3" Party Applications

Performance Math Libs Method Libs Applications I/O

gprof SPRNG PETSc Amber NetCDF
NAMD HDF (4/5)
TAU Metis/parmetis PLAPACK GROMACS
PAPI SCALAPACK Parallel
FFTW (2/3) SLEPC Gamess /O
DDT NWchem
MKL GridFTP
GSL
GotoBLAS

Intel MKL 10.0 (Math Kernel Library)

e Optimized for the I1A32, x86-64, |A64 architectures
e supports both Fortran and C interfaces

* Includes functions in the following areas:
— BLAS (levels 1-3)
— LAPACK
— FFT routines
— ... others
— Vector Math Library (VML)

TRCC

Intel MKL 10.0 (Math Kernel Library)

Enabling MKL

— module load mkl
— module

Example Compile

mpicc -ISTACC_MKL_INC mkl _test.c -L$TACC MKL_LIB -Imkl <>
mpif90 mkl_test.fO0 -L$TACC_MKL_LIB -Imkl_<>

TRCC

Code Optimization

 Always minimize stride length
— Stride length 1 is optimal for vectorizable code.

— This increases cache efficiency, and sets up hardware and
software prefetching.

— Stride lengths of powers of two are typically the worst case
scenario leading to cache misses.
Strive to write Vectorizable Loops
Can be sent to a SIMD Unit
Can be unrolled and pipelined
Can be parallelized through OpenMP Directives
Can be “automatically” parallelized (be careful...)

G4/5 Velocity Engine (SIMD)
Intel/AMD MMX, SSE, SSE2, SSE3 (SIMD)
Cray Vector Units

TRCC

4 Code Optimization

* Write loops with independent iterations, So
that SSE instructions can be employed

Instructions S

SIMD (Single Instruction
Multiple Data)

SSE (Streaming SIMD
Extensions) instructions
operate on multiple data
arguments simultaneously

[
O
al
&
©
O

TRCC

Approx. Memory Bandwidths & Sizes

Relative Memory Bandwidths Relative Memory Sizes

—‘ L1 Cache 16/32 KB
Latency

—> N L2 Cache 1 MB

Functional Units
Registers

~50 GB/s - ~5 CP

L1 Cache
25 GB/s . ~15 CP
L2 Cache

Processor

~12 GB/s |Il
L3 Cache Off Die

~8 GB/s

Local Memory

Code Optimization

When is Inlining important?
When the function is a hot spot
When the call-overhead to work ratio is high
When it can benefit from Interprocedural
Optimization

The C inline keyword provides inlining within source.

As you develop “think inlining”.
Use —ip or —ipo to allow the compiler to inline.

Code Optimization

Example: procedure inlining

program MAIN program MAIN

integer :-: ndim=2, niter=10000000 integer, parameter ::

real*8 :: x(ndim), xO(ndim), r real*8 :: x(ndim), xO(ndim), r
integer :: 1, j} integer :: 1, j}

do 1=1,100000 do 1=1,100000

r=dist(x,x0,ndim) r=0.0
S do j=1,
end do r=r+(x(J)-x0(g))**2
S end do
end program S
end do
real*8 function dist(x,x0,n) -
real*8 :: x0(n), x(n), r end program
integer :-: j,n
r=0.0
do jJ=1,n
r=r+(x)-x0())**2
end do
dist=r
end function

TRCC

Code Optimization

« The following snippets of code illustrate the correct way to access
contiguous elements. i.e. stride 1, for a matrix in both C and Fortran.

Fortran Example: C Example:
real*8 :: a(m,n), b(m,n), c(n,n) double afjm][n], b[m][n], c[m][n];

do 1=1,n for (1=0;1 < m;1++){
do j=1,m for (J=0;jJ < n;j++){
a(d,i)=b@,i+c@.,i) alilp1=bLal01+clili];
end do }
end do }

TRCC

Code Optimization

» Also, for large and small arrays, always try to arrange data so that structures are arrays
with a unit (1) stride.

Performance of Strided Access

3000

2500

Bandwidth Performance Code: 2000

do i = 1,10000000, istride 1500

sum = sum + data(1)
end do

1000

500

Effective Bandwidth

Code Optimization

Loop interchange can help in the case of a DAXPY loop :

integer,parameter: :nkb=16,kb=1024 ,n=nkb*kb/8
o x(n), a(n,n), y(n)

do 1

integer, parameter :: nkb=16,kb=1024, n=nkb*kb/8
Real*8 :: x(n), a(n,n), y(n)

do j=1,n
do i=1,n
y(H)=y@)+a(i,))*x()
end do
end do

Code Optimization

Array Blocking

The objective of array blocking is to work with small array blocks
when expressions contain mixed-stride operations. It uses
complete cache lines when they are brought in from memory, and
hence avoid possible eviction that would otherwise ensue without
blocking.

do 1=1,n
do jJ=1,n
AG,1)=B(@,]j) J)
end do)=B(i+1,j)
end do A ,i+1)=B(1 ,j+1)
A(J+1,i+1)=B(i+1,j+1)
end do
end do

Code Optimization

real*8 a(n,n), b(n,n), c(nh,n)
. do 11=1,n,nb
ix do jj=1,n,nb
multiplication do kk=1,n,nb
do 1=11,min(n,11+nb-1)
do j=jj.min(n,jj+nb-1)
do k=kk,min(n,kk+nb-1)

Array Blocking

Ll
uh
.
b
(™
=

c(r,p)=c(r,1+a,.k)*b(k, 1)

nb x nb nb x nb nb x nb nb x nb

Mauix dimension, n

results from old system
end do; end do; end do; end do; end do; end do

Much more efficient implementations exist, in HPC scientific libraries (ESSL, MKL, ACML,...)

TRCC

Code Optimization

Even low-stride is effective when accessing data in cache.

Performance of Strided Access

9000

Bandwidth Performance Code
(assume data 1s In cache):

Effective Bandwidth

do 1 = 1,50000, 1stride
sum = sum + data(1)
end do

TRCC

Code Optimization

In some cases, an entire loop can be replaced with a single call to a vector function.
For example, the loop below can be written as a call to vdinvSgrt in the Intel VML.:

for (i=0;i<n;i++) {
y[i]=1.0/sqgrt(x]i]);
}

» vdInvSqrt(n,x,y);

vdSinCos(n,x,s,c);
for (i=0;i<n;i++) { for (i=0;i<n;i++) {
y[i]=a*sin(x[i]) + b*cos(x[i]); y[i]=a*s[i] + b*c[i]);
} }

But, how do you make something like this portable?
-- “ifdef”, in C and F90.

TRCC

Code Optimization

#IFDEF example

program main
integer, Parameter :: n=100, nn=2*n, nap=nn*(nn+1)/2
real(8), Parameter :: xmax=20.0, xmin=-xmax

#i1fdef _1BM

integer Do 1opt=20

integer, parameter :: naux=3*nn

real(8):: ap(nap), eval(nn), work(naux)
#eli1t defined 1A32

integer :- 1nfo

real(8) ::ap(nap), eval(nn), work(3*nn)
#endif

#i1fdef 1A32

call DSPEV("n","u",nn,ap,eval,evec,nn,work, info)
#elift defined _I1BM

call DSPEV(iopt,ap,eval,evec,nn,nn,work,naux)
#endif

end program

TRCC

Code Optimization

Loop fusion:

Loop fusion combines two or more loops of the same
iteration space (loop length) into a single loop:

for (?:O;ifn;i+f){ for (1=0;i1<n;i++){

, afi]=x[1]+y[1]; a[i]=, ;[i]+y[i],

for (i=0;i<n;i++){ PLI]=1-00xLT+ 2]
b[i1]=1.0/x[1]+z[1]; ¥

}

Only n memory accesses for X array.

Five streams created.
Costly (at least 30 CP) Division many not be pipelined!

Code Optimization

Loop Fission:

The opposite of loop fusion is loop distribution or
fission. Fission splits a single loop with independent
operations into multiple loops:

do i=1,n
a()=b()+c(i)*d(i)

do i=1,n /end do

a(l)=b(i)+c()*d(i) = doi=1,n
e())=f(1)-g()*h(i)+p()——0w0 e()=f(@i)-g(i)*h(i)+p(i)

\do i=1.n
q(i)=r(i)+s(1)

end do

References

Books
High Performance Computing by Kevin Dowd and Charles Severance (O'Reilly
book) -- general study of high performance computing

Performance Optimization of Numerically Intensive Codes by Stefan Goedecker
and Adolfy Hoisie (Siam book, Society for Industrial and Applied Mathematics)

TACC User Guides

www.tacc.utexas.edu/services/userguides/ranger/
www.tacc.utexas.edu/services/userguides/lonestar/

Compilers
www.intel.com/cd/software/products/asmo-na/eng/compilers/278607.htm
www.intel.com/cd/software/products/asmo-na/eng/compilers/279831.htm

www.pgroup.com/doc/pgiug.pdf

Optimization
http://cache-www.intel.com/cd/00/00/21/92/219281 compiler_optimization.pdf

TRCC

References

Libraries

GotoBLAS www.tacc.utexas.edu/resources/software/
Dense and band matrix software ()
www.netlib.org/scalapack

Large sparse eigenvalue software (and
www.caam.rice.edu/software/ARPACK/

