
Computational Steering

Nate Woody

Drew Dolgert

Lab Materials

• In with the other labs.

• compsteer/simple

• compsteer/gauss_steer

12/9/2010 www.cac.cornell.edu 2

What is Computational Steering?

• Interactivity with remote HPC program.

• Save cycles by redirecting program or stopping unproductive work.

12/9/2010 www.cac.cornell.edu 3

Programs with Parameters

1. Monitor trajectory.

2. Adjust parameters for finding solution.

Parameter

Space

Solution

Space
map

12/9/2010 www.cac.cornell.edu 4

Controlled Failures – the How

• Examine periodic output.

• Canceling a job leave output amiss.

• Steering can request a nice shutdown.

Other ways to cancel a batch job nicely?

12/9/2010 www.cac.cornell.edu 5

Fancy Checkpointing

• Checkpoint iteration is a good place for steering.

• (Checkpointing isn‟t bad, either.)

• As simple as adding a read during checkpoint loop.

• Can choose what data to save.

Every

Wavefunctio

n

Water As

Cloud

No Water

Molecules
Backbone

Think filters.

12/9/2010 www.cac.cornell.edu 6

Interactive Processing
• The application changes behavior depending on parameters.

• Output streams of application become visualization on-the-fly.

You

Login Node

Application

Compute Node(s)

Parameter Changes

Output Stream

12/9/2010 www.cac.cornell.edu 7

Architectural Approaches

• DIY – files, sockets, redis

• General purpose packages – Reality Grid, Cactus

• Application-specific – within VisIt, VisTrails

12/9/2010 www.cac.cornell.edu 8

Basic Architecture

Submission Host

(Steering client)

Master Node for

Parallel Job

Slave Node

Slave Node

SGE
Submit

Job

Start

Job

Command Pipe

Status Pipe

12/9/2010 www.cac.cornell.edu 9

DIY Pieces

• Some protocol to talk to the job on the cluster.

• A way for the application to advertise what‟s changeable.

• Something in the app‟s mainloop to accept new parameters.

12/9/2010 www.cac.cornell.edu 10

Steering an Application

• Begin!

• Application writes a properties file.

def createSteerFile():

 fid = open(STEER_FILE, 'w')

 steerFile = Properties()

 steerFile['stop'] = "0"

 steerFile.store(fid)

 fid.close()

 return os.path.getmtime(STEER_FILE)

12/9/2010 www.cac.cornell.edu 11

Read the Properties

• Check modify time and read it.

def checkSteerFile(steer_mod_time):

 modTime = os.path.getmtime(STEER_FILE)

 if (modTime != steer_mod_time):

 return True

 else:

 return False

def readSteerFile():

 fid = open(STEER_FILE,'r')

 steerFile = Properties()

 steerFile.load(fid)

 fid.close()

 return steerFile,os.path.getmtime(STEER_FILE)

12/9/2010 www.cac.cornell.edu 12

Augment Main Loop def run():

 modtime = createSteerFile()

 while 1:

 #do work

 time.sleep(5)

 if checkSteerFile(modtime):

 print "Got New Steerage!"

 p,modtime = readSteerFile()

 if p['stop'] == "1":

 sys.exit(0)

 else:

 print "No Steerage."

12/9/2010 www.cac.cornell.edu 13

Interaction

• We have feed in.

• Easily extensible.

• No output, though.

• What format for output?

– Charts and graphs already made.

– Preprocessed, to png, jpeg.

– Movies.

12/9/2010 www.cac.cornell.edu 14

Interacting with an Application

• Add a couple of output functions.

• And a hook in main loop to write.

def createOutFile():

 fid = open(OUT_FILE,'w')

 fid.write("date\tx\ty")

 fid.close()

def writeOutFile(vals):

 n= datetime.datetime.today()

 fid = open(OUT_FILE,'a')

 fid.write("%s\t%s" % (n, vals))

 fid.close()

def run():

while 1:

 #do work

 writeOutFile("%s\t%s\n" % (count, val))

 if checkSteerFile(modtime)

 ...
12/9/2010 www.cac.cornell.edu 15

Gnuplot Goodness
• In this trivial example, we outputted into something

gnu plot likes. Then we can just periodically “replot”

on the headnode to watch the app proceed and

save the graph if we would like:

gnuplot> set terminal png

gnuplot> set output „decay.png‟

gnuplot> plot “App_nojob.out”

 using 3:4 title „Output‟

gnuplot> exit

Other examples of fast and stupid?

12/9/2010 www.cac.cornell.edu 16

An Actual Parameter
• Add something called step.

• This will be in .steer file. Affects x-axis movement.

def createSteerFile():

 fid = open(STEER_FILE,'w')

 steerFile = Properties()

 steerFile['stop'] = "0"

 steerFile[„step‟] = “0.1”

 steerFile.store(fid)

 fid.close()

 return os.path.getmtime(STEER_FILE)

12/9/2010 www.cac.cornell.edu 17

Step Size Problem

The step size is too

short in the beginning,

we notice and increase

it.

At some point, we

decrease the step

size again.

12/9/2010 www.cac.cornell.edu 18

Interacting with an Application

• This toy example demonstrates the principle of steering an

application and the last example hints at some powerful things that

can be done.

• A key example of this is to control the actual output of the program.

The toy example showed how to affect the program which was

reflected in the output. Another thing to do is to increase or

decrease the amount of output at each step.

• Collecting all the data for all the timestep in a simulation, may not

always be important, but it may be important for understanding

problems or unexpected results. Steering allows you the ability to

toggle how to the output of your application, so you don‟t have “drink

from the firehose” in order to look at your simulation.

12/9/2010 www.cac.cornell.edu 19

Resolution / Drill Down Example

• Find the maximum of a 2D surface.

• Simulate surface with mixture of Gaussians.

• Implement drivable grid search.

• Parameters

– Xcenter and ycenter – of the area we search

– Extent – how far in all directions

– Step – fineness of our grid

12/9/2010 www.cac.cornell.edu 20

Example Grid Search Data

• Naïve algorithm will repeatedly iterate through full grid with

increasing resolution.

12/9/2010 www.cac.cornell.edu 21

Add to Steer File

 def createSteerFile():

 fid = open(STEER_FILE,'w')

 steerFile = Properties()

 steerFile['stop'] = "0“

 steerFile[„xcenter‟] = “10”

 steerFile[„ycenter‟] = “10”

 steerFile[„res‟] = “0.1”

 steerFile[„step‟] = “0.1”

 steerFile.store(fid)

 fid.close()

 return os.path.getmtime(STEER_FILE)

12/9/2010 www.cac.cornell.edu 22

Active Steering

12/9/2010 www.cac.cornell.edu 23

Starting with the initial

low resolution search of

the entire surface, we

can look at areas of

interest.

Things to Change about Output

• Particle tracking simulation data

• Change

– How often

– Which subset of the data

– What properties we write

• A Filter Pattern, or an Observer Pattern, or both.

12/9/2010 www.cac.cornell.edu 24

Redis

• Key-value store with some atomic operations.

• Compiles quickly and easily.

• Can run one for each job. Lives in-memory.

• API in just about every language (sorry Fortran).

• We could totally make Fortran happen.

12/9/2010 www.cac.cornell.edu 25

Redis as Place to Stick Messages

client

redis

master

worker

worker

12/9/2010 www.cac.cornell.edu 26

Reality Grid Steering Toolkit

• RealityGrid is a large-ish EU project for developing grid middleware

and applications to ease the use of HPC resource.

 This refers to an ambitious and exciting global effort to develop an

environment in which individual users can access computers,

databases and experimental facilities simply and transparently,

without having to consider where those facilities are located. Using

grid technology to closely couple high throughput experimentation

and visualisation, RealityGrid has led the way in showing how close

we are to realising this new computing paradigm today.

[http://www.realitygrid.org]

12/9/2010 www.cac.cornell.edu 27

RealityGrid Architecture

• C, C++, and Fortran wrappers to

communication and I/O functionality.

• Allows the steering connection via

file or sockets (SOAP).

• Visualization is basically a data-sink

that must display the data

appropriately.

• Is based on the process of having

existing code that you would like to

“instrument” to add steering

capability to.

12/9/2010 www.cac.cornell.edu 28

Adding RealityGrid

• Library with an API, so add calls and link

• Toolkit provides I/O

• App registers steerable parameters at start-up.

• App checks for client commands.

• Client searches for apps.

• Visualization part reads I/O streams from app.

• See mini_steerer.c

12/9/2010 www.cac.cornell.edu 29

Cactus Code

• “Problem solving environment”

• Functionality in Thorns.

• You assemble thorns, and it manages communication. Data arrays

are registered with Cactus, so it knows where to look.

• Numerical Relativity is original domain.

12/9/2010 www.cac.cornell.edu 30

Experience with Cactus

• Seamless with HDF and other file formats, web browser

visualization, lots else.

• Steep learning curve. Non-trivial to identify and assemble thorns.

• Not to add to existing code, maybe to start a new code.

12/9/2010 www.cac.cornell.edu 31

