
OpenMP on Ranger and Stampede

(with Labs)

Steve Lantz

Senior Research Associate

Cornell CAC

Parallel Computing at TACC: Ranger to Stampede Transition

November 6, 2012
Based on materials developed by Kent Milfeld at TACC

What is OpenMP?

• OpenMP is an acronym for Open Multi-Processing

• An Application Programming Interface (API) for

developing parallel programs in shared-memory architectures

• Three primary components of the API are:

– Compiler Directives

– Runtime Library Routines

– Environment Variables

• De facto standard -- specified for C, C++, and FORTRAN

• http://www.openmp.org/ has the specification, examples, tutorials

and documentation

11/6/2012 www.cac.cornell.edu 2

http://www.openmp.org/
http://www.openmp.org/

Parallel Region: C/C++ and Fortran

11/6/2012 www.cac.cornell.edu 3

1 #pragma omp parallel

2 { code block

3 a = work(...);

4 }

Line 1 Team of threads is formed at parallel region

Lines 2–3 Each thread executes code block and subroutine call, no

branching into or out of a parallel region

Line 4 All threads synchronize at end of parallel region (implied

barrier)

!$omp parallel

 code block

 call work(...)

!$omp end parallel

LAB: OMP Hello World

OpenMP = Multithreading

• All about executing concurrent work (tasks)

– Tasks execute independently

– Tasks access the same shared memory

– Shared variable updates must be mutually exclusive

– Synchronization through barriers

• Simple way to do multithreading – run tasks on multiple cores/units

• Insert parallel directives to run tasks on concurrent threads

11/6/2012 www.cac.cornell.edu 4

 // repetitive work

 #pragma omp parallel for

 for (i=0; i<N; i++)
 a[i] = b[i] + c[i];

 // repetitive updates

 #pragma omp parallel for

 for (i=0; i<N; i++)
 sum = sum + b[i]*c[i];

OpenMP Fork-Join Parallelism

• Programs begin as a single process: master thread

• Master thread executes until a parallel region is encountered

– Master thread creates (forks) a team of parallel threads

– Threads in team simultaneously execute tasks in the parallel region

– Team threads synchronize and terminate (join); master continues

11/6/2012 www.cac.cornell.edu 5

time
Serial

4 threads

Parallel
execution

Master Thread Multi-Threaded

Serial

4 threads

Parallel Serial

e.g.,

4-thread

execution

Core

M-1

Shared 0

1

2

M-1

:

Shared

Core

0

Core

1

Core

2

Core

M-1

Core

0

Core

1

Core

2

Hardware Model:

Multiple Cores

Software Model:

Threads in

Parallel Region

.. ..

= accessible by

 all threads

x

Shared

= private memory

 for thread x

Thread

0
Thread

1
Thread

2
Thread

M-1 a.out

M threads are usually mapped to M cores.
th

re
a
d
 p

ri
v
a
te

Thread

M
Thread

M+1
Thread

M+2
Thread

2M-1

For HyperThreading, 2 SW threads are

mapped to 2 HW threads on each core.

On the Intel Xeon Phi Coprocessors,

there are 4 HW threads/core.

OpenMP on Shared Memory Systems

Thread Memory Access

• Every thread has access to “global” (shared) memory

– All threads share the same address space

– Threads don’t communicate like MPI processes

• But need to avoid race conditions with shared memory. Examples:

1. If multiple writers are going in no particular order, last writer “wins”

2. A reader may either precede or follow a writer – lack of synchronization

3. Threads may overlap in a code block, causing conditions 1 and 2

• What do you with a race condition?

– Don’t introduce one in the first place: it’s a bug, hard to debug

– Impose order with barriers (explicit/implicit synchronization)

• Use mutual exclusion (mutex) directives to protect critical sections,

where one thread must run at a time (at a performance penalty)

11/6/2012 www.cac.cornell.edu 7

Example of a Critical Section

• In a critical section, need mutual exclusion to get intended result

• The following OpenMP directives prevent this race condition:

#pragma omp critical – for a code block (C/C++)

#pragma omp atomic – for single statements

11/6/2012 www.cac.cornell.edu 8

Thread 0 Thread 1 Value

read ← 0

increment 0

write → 1

read ← 1

increment 1

write → 2

Intended Possible…

Thread 0 Thread 1 Value

0

read ← 0

increment read ← 0

write → increment 1

write → 1

1

OpenMP Directives

• OpenMP directives are comments in source code that specify

parallelism for shared-memory parallel (SMP) machines

• FORTRAN compiler directives begin with one of the sentinels
!OMP, COMP, or *$OMP – use !$OMP for free-format F90

• C/C++ compiler directives begin with the sentinel #pragma omp

11/6/2012 www.cac.cornell.edu 9

!$OMP parallel

 ...

!$OMP end parallel

!$OMP parallel do

 DO ...

!$OMP end parallel do

#pragma omp parallel

 {...

 }

#pragma omp parallel for

 for(...){...

 }

Fortran 90 C/C++

Role of the Compiler

• OpenMP relies on the compiler to do the multithreading

– Compiler recognizes OpenMP directives, builds in appropriate code

• A special flag is generally required to enable OpenMP

– GNU: gcc -fopenmp

– Intel: icc -openmp

• Additional flags are required to enable MIC instructions

– Offload marked sections to MIC: icc -offload-build -openmp

– Build whole code native to MIC: icc -mmic [-openmp]

– These options are valid for Intel compilers only

– Details could change when “Xeon Phi” (the MIC product) is released

11/6/2012 www.cac.cornell.edu 10

OpenMP Syntax

• OpenMP Directives: Sentinel, construct, and clauses

 #pragma omp construct [clause [[,]clause]…] C

 !$omp construct [clause [[,]clause]…] F90

• Example

 #pragma omp parallel private(i) reduction(+:sum) C

 !$omp parallel private(i) reduction(+:sum) F90

• Most OpenMP constructs apply to a “structured block”, that is, a

block of one or more statements with one point of entry at the top

and one point of exit at the bottom.

11/6/2012 www.cac.cornell.edu 11

OpenMP Constructs

11/6/2012 www.cac.cornell.edu 12

OpenMP language

“extensions”

parallel

control

data

access

synchron-

ization

• governs flow

of control in

the program

parallel

directive

• specifies

scoping of

variables

shared

private

reduction

clauses

• coordinates

execution of

threads

critical

atomic

barrier

directives

work-

sharing

• distributes

work among

threads

do/for

sections

single

directives

runtime

environment

• sets/gets environment

schedule

omp_set_num_threads()

omp_get_thread_num()

OMP_NUM_THREADS

OMP_SCHEDULE

clause, API, env. variables

control of

one task

• assigns

work to a

thread

task

directive

(OpenMP 3.0)

OpenMP Parallel Directives

11/6/2012 www.cac.cornell.edu 13

• Replicated – executed by all threads

• Worksharing – divided among threads

PARALLEL

 {code}

END PARALLEL

PARALLEL DO

 do I = 1,N*4

 {code}

 end do

END PARALLEL DO

PARALLEL

 {code1}

DO

 do I = 1,N*4

 {code2}

 end do

 {code3}

END PARALLEL

code code code code
I=N+1,2N

 code
I=2N+1,3N

 code

I=3N+1,4N

 code

I=1,N

code

code1 code1 code1 code1

I=N+1,2N

 code2
I=2N+1,3N

 code2

I=3N+1,4N

 code2

I=1,N

code2

code3 code3 code3 code3

Worksharing

Combined

Replicated

OpenMP Worksharing, Mutual Exclusion

11/6/2012 www.cac.cornell.edu 14

Use OpenMP directives to specify worksharing

in a parallel region, as well as mutual exclusion

#pragma omp parallel

{

} // end parallel

Code block Thread action

for Worksharing

sections Worksharing

single One thread

critical One thread at a time

parallel do/for

parallel sections

Directives can be combined,

if a parallel region has just

one worksharing construct.

#pragma omp

Worksharing Loop: C/C++

11/6/2012 www.cac.cornell.edu 15

1 #pragma omp parallel for

2 for (i=0; i<N; i++)

3 {

4 a[i] = b[i] + c[i];

5 }

6

Line 1 Team of threads formed (parallel region).

Lines 2–6 Loop iterations are split among threads.

Implied barrier at end of block(s) {}.

Each loop iteration must be independent of other iterations.

#pragma omp parallel

{

 #pragma omp for

 for (i=0; i<N; i++)

 {a[i] = b[i] + c[i];}

}

General form:

Worksharing Loop: Fortran

11/6/2012 www.cac.cornell.edu 16

1 !$omp parallel do

2 do i=1,N

3 a(i) = b(i) + c(i)

4 enddo

5 !$omp end parallel do

6

Line 1 Team of threads formed (parallel region).

Lines 2–5 Loop iterations are split among threads.

Line 5 (Optional) end of parallel loop (implied barrier at enddo).

Each loop iteration must be independent of other iterations.

!$omp parallel

!$omp do

 do i=1,N

 a(i) = b(i) + c(i)

 enddo

!$omp end parallel

General form:

OpenMP Clauses

• Directives dictate what the OpenMP thread team will do

• Examples:

– Parallel regions are marked by the parallel directive

– Worksharing loops are marked by do, for directives (Fortran, C/C++)

• Clauses control the behavior of any particular OpenMP directive

• Examples:

1. Scoping of variables: private, shared, default

2. Initialization of variables: copyin, firstprivate

3. Scheduling: static, dynamic, guided

4. Conditional application: if

5. Number of threads in team: num_threads

11/6/2012 www.cac.cornell.edu 17

Private, Shared Clauses

• In the following loop, each thread needs a private copy of temp

– The result would be unpredictable if temp were shared, because each

processor would be writing and reading to/from the same location

 !$omp parallel do private(temp,i) shared(A,B,C)

 do i=1,N

 temp = A(i)/B(i)

 C(i) = temp + cos(temp)

 enddo

 !$omp end parallel do

– A “lastprivate(temp)” clause will copy the last loop (stack) value of temp

to the (global) temp storage when the parallel DO is complete

– A “firstprivate(temp)” initializes each thread’s temp to the global value

11/6/2012 www.cac.cornell.edu 18

LAB: Worksharing Loop

Worksharing Results

11/6/2012 www.cac.cornell.edu 19

If work is completely

parallel, scaling is linear.

Scheduling, memory

contention and overhead

can impact speedup and

Mflop/s rate.

Speedup =

cputime(1) / cputime(N)

Work-Sharing on Production System

Lab Example 2

0

2

4

6

8

10

0 2 4 6 8

Threads

S
p

e
e

d
u

p

Series1

Series2

Work-Sharing on Production System

(Lab Example 2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9

CPUs

T
im

e
 (

s
e

c
.)

Actual

Ideal

Overhead to Fork a Thread Team

11/6/2012 www.cac.cornell.edu 20

Overhead for Parallel Team (-O3, -qarch/tune=pwr4)

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20

Threads

C
lo

c
k
 P

e
ri

o
d

s
 (

1
.3

G
H

z
 P

6
9
0
)

parallel

parallel_do

• Increases roughly linearly with number of threads

Merging Parallel Regions

11/6/2012 www.cac.cornell.edu 21

The !$OMP PARALLEL directive declares an entire region as parallel;

therefore, merging work-sharing constructs into a single parallel region

eliminates the overhead of separate team formations

!$OMP PARALLEL

 !$OMP DO

 do i=1,n

 a(i)=b(i)+c(i)

 enddo

 !$OMP END DO

 !$OMP DO

 do i=1,m

 x(i)=y(i)+z(i)

 enddo

 !$OMP END DO

!$OMP END PARALLEL

!$OMP PARALLEL DO

 do i=1,n

 a(i)=b(i)+c(i)

 enddo

!$OMP END PARALLEL DO

!$OMP PARALLEL DO

 do i=1,m

 x(i)=y(i)+z(i)

 enddo

!$OMP END PARALLEL DO

Runtime Library Functions

11/6/2012 www.cac.cornell.edu 22

omp_get_num_threads() Number of threads in current team

omp_get_thread_num()

Thread ID, {0: N-1}

omp_get_max_threads() Number of threads in environment,
OMP_NUM_THREADS

omp_get_num_procs() Number of machine CPUs

omp_in_parallel()

True if in parallel region & multiple threads

executing

omp_set_num_threads(#) Changes number of threads for parallel

region, if dynamic threading is enabled

LAB: OMP Functions

Environment Variables, More Functions

11/6/2012 www.cac.cornell.edu 23

• To control the OpenMP runtime environment

• To enable dynamic thread count (not dynamic scheduling!)

omp_set_dynamic() Set state of dynamic threading: if equal to “true”,

omp_set_num_threads() controls thread count

omp_get_dynamic() True if dynamic threading is on

OMP_NUM_THREADS Set to permitted number of threads: this is the
value returned by omp_get_max_threads()

OMP_DYNAMIC TRUE/FALSE for enable/disable dynamic

threading (can also use the function below)

Additional Topics to Explore…

• Schedule clause: specify how to divide work among threads

 schedule(static) schedule(dynamic,M)

• Reduction clause: perform collective operations on shared variables

 reduction(+:asum) reduction(*:aprod)

• Nowait clause: remove the barrier at the end of a parallel section

 for ... nowait end do nowait

• Lock routines: make mutual exclusion more lightweight and flexible

 omp_init_lock(var) omp_set_lock(var)

11/6/2012 www.cac.cornell.edu 24

Some Programming Models for Intel MIC

• Intel Threading Building Blocks (TBB)

– For C++ programmers

• Intel Cilk Plus

– Task-oriented add-ons for OpenMP

– Currently for C++ programmers, may become available for Fortran

• Intel Math Kernel Library (MKL)

– Automatic offloading by compiler for some MKL features

– MKL is inherently parallelized with OpenMP

• OpenMP

– On Stampede, TACC expects that this will be the most interesting

programming model for HPC users

11/6/2012 www.cac.cornell.edu 25

MIC Programming with OpenMP

• In OpenMP 4.0, accelerator syntax may ultimately be standardized,

but for now, we use special MIC directives for the Intel compilers

• OpenMP pragma is preceded by MIC-specific pragma

– Fortran: !dir$ omp offload target(mic) <...>

– C: #pragma offload target(mic) <...>

• All data transfer is handled by the compiler

– User control provided through optional keywords

• I/O can be done from within offloaded region

– Data can “stream” through the MIC; no need to leave MIC to fetch new

data

– Also very helpful when debugging (print statements)

• Specific subroutines can be offloaded, including MKL subroutines

11/6/2012 www.cac.cornell.edu 26

Example 1

11/6/2012 www.cac.cornell.edu 27

use omp_lib ! OpenMP

integer :: n = 1024 ! Size

real, dimension(:,:), allocatable :: a ! Array

integer :: i, j ! Index

real :: x ! Scalar

allocate(a(n,n)) ! Allocation

!dir$ omp offload target(mic) ! Offloading

!$omp parallel do shared(a,n), & ! Par. region

 private(x, i, j), schedule(dynamic)

do j=1, n

 do i=j, n

 x = real(i + j); a(i,j) = x

#include <omp.h> /* C example */

 const int n = 1024; /* Size of the array */

 int i, j; /* Index variables */

 float a[n][n], x

#pragma offload target(mic)

#pragma omp parallel for shared(a), \

 private(x), schedule(dynamic)

 for(i=0;i<n;i++) {

 for(j=i;j<n;j++) {

 x = (float)(i + j); a[i][j] = x; }}

2-D array (a) is filled with

data on the coprocessor

Data management done

automatically by compiler

• Memory is allocated
on coprocessor for (a)

• Private variables
(i,j,x) are created

• Result is copied back

Example 2

11/6/2012 www.cac.cornell.edu 28

#pragma offload target(mic) //Offload region

#pragma omp parallel

{

 #pragma omp single /* Open File */

 {

 printf("Opening file in offload region\n");

 f1 = fopen("/var/tmp/mydata/list.dat","r");

 }

 #pragma omp for

 for(i=1;i<n;i++) {

 #pragma omp critical

 { fscanf(f1,"%f",&a[i]);}

 a[i] = sqrt(a[i]);

 }

 #pragma omp single

 {

 printf("Closing file in offload region\n");

 fclose (f1);

 }

}

I/O from offloaded region:

• File is opened and

closed by one thread
(omp single)

• All threads take turns

reading from the file
(omp critical)

Threads may also read in

parallel (not shown)

• Parallel file system

• Threads read parts

from different targets

Example 3

11/6/2012 www.cac.cornell.edu 29

! snippet from the caller...

! offload MKL routine to accelerator

!dir$ attributes offload:mic :: sgemm

!dir$ offload target(mic)

call & sgemm('N','N',n,n,n,alpha,a,n,b,n,beta,c,n)

! offload hand-coded routine with data clauses

!dir$ offload target(mic) in(a,b) out(d)

call my_sgemm(d,a,b)

! snippet from the hand-coded subprogram...

!dir$ attributes offload:mic :: my_sgemm

subroutine my_sgemm(d,a,b)

real, dimension(:,:) :: a, b, d

!$omp parallel do

do j=1, n

 do i=1, n

 d(i,j) = 0.0

 do k=1, n

 d(i,j) = d(i,j)+a(i,k)*b(k,j)

 enddo; enddo; endo

end subroutine

Two routines, MKL’s
sgemm and my_sgemm

• Both are called with
offload directive

• my_sgemm specifies

explicit in and out

data movement

Use attributes to

have routine compiled for

the coprocessor, or link

coprocessor-based MKL

LAB: Hand-coding vs. MKL

#pragma omp parallel

 {

#pragma omp single

 { offload(); }

#pragma omp for

 for(i=0; i<N; i++){...}

 }

!$omp parallel

 !$omp single

 call offload();

 !$omp end single

 !$omp do

 do i=1,N; ...

 end do

!$omp end parallel

Heterogeneous Threading, Sequential

11/6/2012 www.cac.cornell.edu 30

wait

Generate

parallel region

idle

threads

offload

single

MPI process,

master thread

workshare

on cpu

C/C++

F90

Heterogeneous Threading, Concurrent

11/6/2012 www.cac.cornell.edu 31

wait

Generate

parallel region

offload

single

nowait

MPI process,

master thread

assist when

done in single

workshare

on cpu

#pragma omp parallel

 {

#pragma omp single nowait

 { offload(); }

#pragma omp for schedule(dynamic)

 for(i=0; i<N; i++){...}

 }

!$omp parallel

 !$omp single

 call offload();

 !$omp end single nowait

 !$omp do schedule(dynamic)

 do i=1,N; ...

 end do

!$omp end parallel

C/C++

F90

Loop Nesting

11/6/2012 www.cac.cornell.edu 32

• OpenMP 3.0 supports nested parallelism, older implementations

may ignore the nesting and serialize inner parallel regions.

• A nested parallel region can specify any number of threads to be

used for the thread team, new id’s are assigned.

time

Serial
execution

Master Thread

Serial Nested Parallel Region

