

Cornell Center for Advanced Computing Page 1

OpenMP Exercises

These exercises will introduce you to using OpenMP for parallel
programming. There are four exercises:

1. OMP Hello World
2. Worksharing Loop
3. OMP Functions
4. Hand-coding vs. MKL

To begin, log onto an interactive node of Lonestar using your account:

ssh <user-name>@lonestar.tacc.utexas.edu

Untar the openmp_lab.tar file (in ~tg459572) into your directory:

tar xvf ~tg459572/LABS/lab_openmp.tar

cd into the lab_openmp directory

cd lab_openmp

The makefile that comes with these exercises is set up to use the Intel 11.1
compilers, which should be the default when you log on. Also, one of the
exercises requires the Intel Math Kernel Library 10.3, so add that to your
list of modules:

module add mkl/10.3

https://www.cac.cornell.edu/Ranger/OpenMP/exercise.aspx#hello
https://www.cac.cornell.edu/Ranger/OpenMP/exercise.aspx#loop
https://www.cac.cornell.edu/Ranger/OpenMP/exercise.aspx#func
https://www.cac.cornell.edu/Ranger/OpenMP/exercise.aspx#mkl

Cornell Center for Advanced Computing Page 2

OMP Hello world
The Hello world example is very short, so for convenience we will run it on
the interactive node where you're logged in. The other examples will run
longer and will involve measuring performance, so they will be done on
dedicated nodes through the batch system.

Look at the code in hello.c and/or hello.f90. This code simply reports
OpenMP thread IDs in a parallel region. Compile hello.c or hello.f90 using
the makefiles provided and execute first with 3 threads and then with 2 to
16 threads. (If you want Fortran, substitute hello_f90 for hello_c below.)

make hello_c
export OMP_NUM_THREADS=3
./hello_c
make run_hello_c

Worksharing Loop
Look at the code in file daxpy.f90. The nested loop repeats a simple
DAXPY type of operation (double-precision ax+y, scalar times vector plus
vector). It is repeated ten times in order to gather statistics on performance.
Parameter N determines the size of the vector: N=48*1024*1024 is the
default. A more detailed comparison will be done in the batch job. (If you
prefer, the makefile lets you “make run_work” interactively.)

make daxpy
export OMP_NUM_THREADS=3
./daxpy

Cornell Center for Advanced Computing Page 3

OMP Functions
Look at the code in work.f90. Threads perform some work in a subroutine
called pwork. The timer returns wall-clock time. Compile work.f90 and run it
with one set of threads to verify that it built properly. Running with other
numbers of threads will be done in a batch job after all of the executables
have been built.

make work
export OMP_NUM_THREADS=3
./work

Now look at work_serial.f90. We no longer use omp_lib, and numeric
values are substituted for the calls to OMP_ functions. The OpenMP
directives are ignored because the code is not compiled with OpenMP. As
expected, this code runs with nearly the same speed as the work.f90 code
with 1 thread. The overhead due to OpenMP is minimal in this case,
because all threads are forked at the beginning and the parallel region
contains all the work.

make work_serial
./work_serial
export OMP_NUM_THREADS=1
./work

Cornell Center for Advanced Computing Page 4

Hand-coding vs. MKL
Look at the code in file daxpy2.f90. The nested loop performs a DAXPY
operation for each outer loop. The DAXPY routine comes from the Intel
MKL library, which is already parallelized with OpenMP (!). You should
have loaded the MKL module at the beginning of these exercises. All you
have to do is change the value of OMP_NUM_THREADS. Compare the
performance to what you saw in earlier exercise with the hand-coded
OpenMP version of DAXPY.

make daxpy2
export OMP_NUM_THREADS=3
./daxpy2

Next prepare to run a batch job. Edit the file job to put your account
number after the -A flag. Note the –pe option is commented out; we will
specify that option later. There are two notification lines you may wish to
uncomment.

vi job

Now run a batch job that makes more detailed comparisons on a dedicated
node. (If you prefer, the makefile has various interactive run_ and plot_
options; the run options can be done in batch, and the plot_ options can be
done interactively.)

qsub –pe 12way 12 job

showq -u

Note, the number of OpenMP threads can exceed the number of physical
cores.

