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What is Vectorization? 

• Hardware Perspective: Specialized instructions, registers, or  

functional units to allow in-core parallelism for operations on arrays 

(vectors) of data. 

 

• Compiler Perspective:  Determine how and when it is possible to 

express computations in terms of vector instructions 

 

• User Perspective: Determine how to write code in a manner that 

allows the compiler to deduce that vectorization is possible. 
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Vectorization: Hardware 

• Goal: parallelize computations over vector arrays 

• Two major approaches:  pipelining, SIMD (Single Instruction Multiple 

Data) 

• Pipelining:  Several different tasks executing simultaneously 

– Popular through 1990s in supercomputing contexts 

– Large vectors, Many cycles per “instruction” 

• SIMD: Many instances of a single task executing simultaneously 

– Late ‘90s – present, commodity CPUs (x86, x64, PowerPC, etc) 

– Small vectors, few cycles per instruction 

– Newer CPUs (Sandy Bridge) can pipeline some SIMD instructions as 

well – best of both worlds. 
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Vectorization: Pipelining 

Clock Cycle R1 R2 R3 R4 

1 X1 

2 X2 X1
2 

3 X3 X2
2 X1

2+8 

4 X4 X3
2 X2

2+8 (X1
2+8)/2 

5 X5 X4
2 X3

2+8 (X2
2+8)/2 

6 X5
2 X4

2+8 (X3
2+8)/2 

7 X5
2+8 (X4

2+8)/2 

8 (X5
2+8)/2 
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Square 

Add 
Divide 

Load 

Hypothetical pipelined operations 



Vectorization: Hardware: SIMD 

Clock R1 R2 R3 R4 

1 [X1, X2…X5] 

2 [X1
2, X2

2…X5
2] 

3 [X1
2+8, X2

2+8…X5
2+8] 

4 [(X1
2+8)/2, 

(X2
2+8)/2 

… 

(X5
2+8)/2] 
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Load 

Square 

Add 

Divide 

Hypothetical SIMD operations 



Vectorization via SIMD: Motivation 

• CPU speeds reach a plateau 

– Power limitations! 

– Many “slow” transistors more efficient than fewer “fast” transistors 

• Process improvements make physical space cheap 

• Moore’s law, 2x every 18-24 months 

• Easy to add more “stuff” 

• One solution: More cores 

– First dual core Intel CPUs appear in 2005 

– Increasing in number rapidly (e.g. 8 in Stampede, 60+ on MIC) 

• Another Solution: More FPU units per core – vector operations 

– First appeared on a Pentium with MMX in 1996 

– Increasing in vector width rapidly (e.g. 512-bit [8 doubles]) on MIC  
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Vectorization via SIMD: History 

        Year Registers Instruction Set 

~1997 80-bit  MMX Integer SIMD (in x87 registers)  

~1999 128-bit  SSE1 SP FP SIMD (xMM0-8) 

~2001 128-bit  SSE2 DP FP SIMD (xMM0-8) 

  ---  128-bit  SSEx 

~2010 256-bit  AVX DP FP SIMD (yMM0-16) 

~2012 512-bit  (MIC) 

~2014 512-1024-bit (Haswell) 
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Vector Registers 
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32-bit 

Floating Point (FP) 
0 127 

64-bit 

SSE/AVX 128 

AVX-256 

… 
… 

MIC-512 

xmm ymm zmm 

2/4 

4/8 

8/16 



SIMD Instructions 

• Loading 

– movupd xmm0 … (SSE move unaligned packed double into 128-bit ) 

– vmovaps ymm0 … (AVX move aligned packed single into 256-bit) 

• Operating 

– vaddpd ymm1 ymm2 (AVX add packed double 256-bit) 

– addsd (SSE Add scalar doubles – SSE, but NOT vector op!) 

• KEY: 

– v = AVX 

– p, s =  packed, scalar 

– u, a = unaligned, aligned 

– s, d = single, double 

12/11/2012 www.cac.cornell.edu 9 



AVX Instructions 

• Optimal for 64-bit operation 

• Uses Vex prefix (V) 

– Extendable to 512-bit or 1024-bit SIMD 

– Can Reference 3 or 4 registers  

– New instructions, broadcast to registers, mask, permute, etc 

• FMA (Fused Multiply Add)  available soon (Haswell/AVX2) 
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AVX Instructions 
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Speed 

• True SIMD parallelism – typically 1 cycle per floating point 

computation 

– Exception: Slow operations like division, square roots 

• Speedup (compared to no vector) proportional to vector width 

– 128-bit SSE – 2x double, 4x single 

– 256-bit AVX – 4x double, 8x single 

– 512-bit MIC – 8x double, 16x single 

• Hypothetical AVX example: 8 cores/CPU * 4 doubles/vector * 2.0 

GHz = 64 Gflops/CPU DP 

– Pipelining could make this even greater! 
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Speed 

• Clearly memory bandwidth is potential issue, we’ll explore this later 

– Poor cache utilization, alignment, memory latency all detract from ideal 

• SIMD is parallel, so Amdahl’s law is in effect! 

– Serial/scalar portions of code or CPU are limiting factors 

– Theoretical speedup is only a ceiling 
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User Perspective 

Let’s take a step back – how can we leverage this power 

• Program in assembly 

– Ultimate performance potential, but only for the brave 

• Program in intrinsics 

– Step up from assembly, useful but risky 

• Let the compiler figure it out 

– Relatively “easy” for user, “challenging” for compiler 

– Less expressive languages like C make compiler’s job more difficult 

– Compiler may need some hand holding. 

• Link to an optimized library that does the actual work 

– e.g. Intel MKL, written by people who know all the tricks. 

– Get benefits “for free” when running on supported platform 
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Vector-aware coding 

• Know what makes  vectorizable at all 

– “for” loops (in C) or “do” loops (in fortran) that meet certain constraints 

• Know where vectorization will help 

• Evaluate compiler output 

– Is it really vectorizing where you think it should? 

• Evaluate execution performance 

– Compare to theoretical speedup 

• Know data access patterns to maximize efficiency 

• Implement fixes: directives, compilation flags, and code changes 

– Remove constructs that make vectorization impossible/impractical 

– Encourage/force vectorization when compiler doesn’t, but should 

– Better memory access patterns 
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Writing Vector Loops 

• Basic requirements of vectorizable loops: 

– Countable at runtime 

• Number of loop iterations is known before loop executes 

• No conditional termination (break statements) 

– Have single control flow 

• No Switch statements 

• ‘if’ statements are allowable when they can be implemented as masked 

assignments  

– Must be the innermost loop if nested 

• Compiler may reverse loop order as an optimization! 

– No function calls 

• Basic math is allowed: pow(), sqrt(),  sin(), etc 

• Some Inline functions allowed 
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Conceptualizing Compiler Vectorization 

• Think of vectorization in terms of loop unrolling 

– Unroll N interactions of loop, where N elements of data array fit into 

vector register 
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for (i=0; i<N;i++) { 

 a[i]=b[i]+c[i]; 

} 

for (i=0; i<N;i+=4) { 

 a[i+0]=b[i+0]+c[i+0]; 

 a[i+1]=b[i+1]+c[i+1]; 

 a[i+2]=b[i+2]+c[i+2]; 

 a[i+3]=b[i+3]+c[i+3]; 

} 

Load b(i..i+3) 

Load c(i..i+3) 

Operate b+c->a 

Store a 



Compiling Vector loops  

• Intel Compiler: 

– Vectorization starts at optimization level –O2  

– Will default to SSE instructions 

– Can embed SSE and AVX instructions in the same binary with –axAVX 

• Will run AVX on CPUs with AVX support, SSE otherwise 

– -vec-report=<n> for a vectorization report 

• GCC 

– Vectorization is disabled by default, regardless of optimization level 

– Need –ftree-vectorize flag, combined with optimization > –O2 

– SSE by default, -mavx -march=corei7-avx for AVX 

– -ftree-vectorizer-verbose for a vectorization report 
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Lab: Simple Vectorization 

In this lab you will 

• Use the Intel and gcc compilers to create vectorized with non-

vectorized code 

• Compare the performance of vectorized vs non-vectorized code 

• Take an initial look at compiler vectorization reports 
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Lab: Simple Vectorization 

• Though contrived, observed vector performance increase was 

almost close to ideal – almost 100% code in tight vectorizable loop 

• Results for Sandy Bridge (Laptop): 
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Compile Options Time 

-no-vec –O3 .937s 

-O3 .242s 

-O3 -axAVX .125s 



Challenge: Loop Dependencies 

• Vectorization changes the order of computation compared to 

sequential case 

• Compiler must be able to prove that vectorization will produce 

correct result.  

• Need to consider independence of unrolled loop operations – 

depends on vector width 

• Compiler performs dependency analysis 
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Loop Dependencies: Read After Write 

Consider the loop: 

a=  {0,1,2,3,4} 

b = {5,6,7,8,9} 

 

Applying each operation sequentially: 

a[1] = a[0] + b[1]  →  a[1] = 0 + 6    →  a[1] = 6 

a[2] = a[1] + b[2]  →  a[2] = 6 + 7    →  a[2] = 13 

a[3] = a[2] + b[3]  →  a[3] = 13 + 8  →  a[3] = 21 

a[4] = a[3] + b[4]  →  a[4] = 21 + 9  →  a[4] = 30 

 

a = {0, 6, 13, 21, 30} 
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for( i=1; i<N; i++)  

  a[i] = a[i-1] + b[i]; 

 



Loop Dependencies: Read After Write 

Consider the loop: 

a=  {0,1,2,3,4} 

b = {5,6,7,8,9} 

 

Applying each operation sequentially: 

a[1] = a[0] + b[1]  →  a[1] = 0 + 6    →  a[1] = 6 

a[2] = a[1] + b[2]  →  a[2] = 6 + 7    →  a[2] = 13 

a[3] = a[2] + b[3]  →  a[3] = 13 + 8  →  a[3] = 21 

a[4] = a[3] + b[4]  →  a[4] = 21 + 9  →  a[4] = 30 

 

a = {0, 6, 13, 21, 30} 

 
12/11/2012 www.cac.cornell.edu 23 

for( i=1; i<N; i++)  

  a[i] = a[i-1] + b[i]; 

 



Loop Dependencies: Read After Write 

Now let’s try vector operations: 

a=  {0,1,2,3,4} 

b = {5,6,7,8,9} 

 

Applying vector operations, i={1,2,3,4}: 

a[i-1] = {0,1,2,3}   (load) 

b[i]    = {6,7,8,9}   (load) 

{0,1,2,3} + {6,7,8,9} = {6, 8, 10, 12}  (operate) 

a[i] = {6, 8, 10, 12}   (store) 

 

a = {0, 6, 8, 10, 12} ≠ {0, 6, 13, 21, 30}    NOT VECTORIZABLE 
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for( i=1; i<N; i++)  

  a[i] = a[i-1] + b[i]; 

 



Loop Dependencies: Write after Read 

Consider the loop: 

a=  {0,1,2,3,4} 

b = {5,6,7,8,9} 

 

Applying each operation sequentially: 

a[0] = a[1] + b[0]  →  a[0] = 1 + 5    →  a[0] = 6 

a[1] = a[2] + b[1]  →  a[1] = 2 + 6    →  a[1] = 8 

a[2] = a[3] + b[2]  →  a[2] = 3 + 7    →  a[2] = 10 

a[3] = a[4] + b[3]  →  a[3] = 4 + 8    →  a[3] = 12 

 

a = {6, 8, 10, 12 , 4} 
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for( i=0; i<N; i++)  

  a[i] = a[i+1] + b[i]; 

 



Loop Dependencies: Write after Read 

Now let’s try vector operations: 

a=  {0,1,2,3,4} 

b = {5,6,7,8,9} 

 

Applying vector operations, i={1,2,3,4}: 

a[i+1] = {1,2,3,4}   (load) 

b[i]    = {5,6,7,8}   (load) 

{1,2,3,4} + {5,6,7,8} = {6, 8, 10, 12}  (operate) 

a[i] = {6, 8, 10, 12}   (store) 

 

a = {0, 6, 8, 10, 12} = {0, 6, 8, 10, 12}    VECTORIZABLE 
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for( i=0; i<N; i++)  

  a[i] = a[i+1] + b[i]; 

 



Loop Dependencies 

• Read After Write 

– Also called “flow” dependency 

– Variable written first, then read 

– Not vectorizable 

 

 

 

• Write after Read 

– Also called “anti” dependency 

– Variable read first, then written 

– vectorizable 
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for( i=1; i<N; i++)  

  a[i] = a[i-1] + b[i]; 

 

for( i=0; i<N-1; i++)  

  a[i] = a[i+1] + b[i]; 



Loop Dependencies 

• Read after Read 

– Not really a dependency 

– Vectorizable 

 

• Write after Write 

– a.k.a “output” dependency 

– Variable written, then re-written 

– Not vectorizable 
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for( i=0; i<N; i++)  

   a[i] = b[i%2] + c[i]; 

 

for( i=0; i<N; i++)  

   a[i%2] = b[i] + c[i]; 

 



Loop Dependencies: Aliasing 

• In C, pointers can hide data dependencies! 

– Memory regions they point to may overlap 

• Is this safe?: 

 

 

 

 

 

– .. Not if we give it the arguments compute(a, a+1, c); 

• Effectively, b is really a[i-1] → Read after Write dependency 

• Compilers can usually cope, add bounds checking tests (overhead) 
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void compute(double *a,  

 double *b, double *c) { 

    for (i=1; i<N; i++) { 

   a[i]=b[i]+c[i]; 

    } 

} 



Vectorization Reports 

• Shows which loops are or are not vectorized, and why 

• Intel: -vec-report=<n> 

– 0: None 

– 1:  Lists vectorized loops 

– 2: Lists loops not vectorized, with explanation 

– 3: Outputs additional dependency information 

– 4: Lists loops not vectorized, without explanation 

– 5: Lists loops not vectorized, with dependency information 

• Reports are essential for determining where the compiler finds a 

dependency 

• Compiler is conservative, you need to go back and verify that there 

really is a dependency. 
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Loop Dependencies: Vectorization Hints 

• Compiler must prove there is no data dependency that will affect 

correctness of result 

• Sometimes, this is impossible  

– e.g. unknown index offset, complicated use of pointers 

• Intel compiler solution: IVDEP (Ignore Vector DEPendencies)  hint. 

– Tells compiler “Assume there are no dependencies” 
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subroutine 

vec1(s1,M,N,x) 

… 

!DEC$ IVDEP 

do i = 1,N 

 x(i) = x(i+M) + s1 

end do 

void vec1(double s1,int M, 

   int N,double *x) { 

… 

#pragma IVDEP 

for(i=0;i<N;i++) x[i]=x[i+M]+s1; 



Compiler hints affecting vectorization 

• For Intel compiler only 

• Affect whether loop is vectorized or not 

• #pragma ivdep 

– Assume no dependencies.   

– Compiler may vectorize loops that it would otherwise think are not 

vectorizable 

• #pragma vector always 

– Always vectorize if technically possible to do so. 

– Overrides compiler’s decision to not vectorize based upon cost 

• #pragma novector 

– Do not vectorize 
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Loop Dependencies: Language Constructs 

• C99 introduced ‘restrict’ keyword to language 

– Instructs compiler to assume addresses will not overlap, ever 

 

 

 

 

 

 

 

• May need compiler flags to use, e.g. –restrict, -std=c99
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void compute(double * restrict a,  

 double * restrict b, double * restrict c) { 

    for (i=1; i<N; i++) { 

   a[i]=b[i]+c[i]; 

    } 

} 



Lab: Vector hinting and reports 

• In this lab, we will use the Intel compiler to compile code that has a 

vector dependency 

• By analyzing the reports and adding #pragma statements, we will 

see if we can get around the compiler’s dependency analysis 

checks, and what the effects are. 
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Lab: Vector Hinting and Reports 

• Multiple levels of vector reports can help diagnose potential issues 

• Compilers (Intel) must be conservative when vectorizing loops.  

User markup (e.g #pragma) 

• Sometimes this conservatism is warranted.   

– Can lead to incorrect results if we’re not careful when we override! 

• Domain of incorrect results can be influenced by vector width. 
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Cache and Alignment 

 

 

 

 

 

 

 

    ymm2           ymm0     ymm1 

• Optimal vectorization requires concerns beyond SIMD unit! 

– Registers: Alignment of data on 128, 256 bit boundaries 

– Cache: Cache is fast, memory is slow 

– Memory: Sequential access much faster than random/strided 
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Cache Utilization 

• Loads/stores to L1 cache are fastest 

• System memory is very slow in comparison 

• If vector units are starved for data, effectiveness is reduced 

significantly! 

12/11/2012 www.cac.cornell.edu 37 

Cache 

2/2 DP words/CP (LD/ST) 

4/2 DP words/CP (LD/ST) 

Core 
4 FLOPS/CP 

8 FLOPS/CP 

Memory 

~0.4 DP word/CP 
 
(1600 DDR3, 1 channel, 3.0GHz Core) 

”Pipes” for Streaming Data to Cores 



Strided access 

• Fastest usage pattern is “stride 1”: perfectly sequential 

• Best performance when CPU can load L1 cache from memory in 

bulk, sequential manner 

• Stride 1 constructs: 

– Iterating Structs of arrays vs arrays of structs 

– Multi dimensional array: 

• Fortran: stride 1 on “inner” dimension 

• C/C++: Stride 1 on “outer” dimension 
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do j = 1,n; do i=1,n 

   a(i,j)=b(i,j)*s 

enddo; endo 

for(j=0;j<n;j++) 

for(i=0;i<n;i++) 

   a[j][i]=b[j][i]*s; 



Strided access 

• Striding through memory 

reduces effective memory 

bandwidth! 

– For DP, roughly 1-stride/8 

• Worse than non-aligned 

access.  Lots of memory 

operations to populate a 

cache line, vector register  
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Cache and Alignment 

• Consider our simple unrolling example 

– Unroll N interactions of loop 

– Convert to load/operate/store vector instructions 
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for (i=0; i<N;i++) { 

 a[i]=b[i]+c[i]; 

} 

vmovapd [next a bytes] xmm0 

vmovapd [next c bytes] xmm1 

vaddpd xmm0, xmm1 

vmovapd xmmm1 [next a bytes] 

vmovupd [next a bytes] ymm0 

vmovupd [next c bytes] ymm1 

vaddpd ymm0, ymm1 

vmovupd ymmm1 [next a bytes] 

V = AVX 

U = unaligned 

P = packed (vector) 

D = double 



Cache and Alignment 

 

 

 

 

 

 

 

• Vector load instructions move multiple 

values from cache into registers 

simultaneously. 

• Fastest when entire cache line moved 

as one unit, i.e. aligned 
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Alignment 
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Alignment 

• Applies especially to arrays, structs 

– Iterating through multi-dimensional arrays may affect alignment if 

colums/rows are not a multiple of cache line length. 

• Solution: use padding and adapt your algorithm 

• Alignment boundary depends on processor architecture 

– Westmere, Opteron (Lonestar, Ranger): 16 byte 

– Sandy Bridge (Stampede): 32 byte 

– MIC (Stampede): 64 byte  

• Compilers are great at automatically handling alignment 

– Harder to determine if they’re successful, though 

– May notice alignment issues through decreased performance 

– Glance at assembly, look for unaligned instructions in tight loops (e.g. 

movu.., vmovu.. 
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Manual Alignment 

• For Intel, compiler directives can force compiler to assume correct 

alignment 

– #pragma vector align asserts that data in the loop is aligned to the 

appropriate boundary 

– Be careful with SSE – can segfault if you’re wrong! 

• Can add alignment attributes when declaring variables to guarantee 

they’re aligned 

– Usually the compiler already accounts for this if all references are in the 

same file, or multiple files are compiled with -ipo 

– _declspec(align(16, 8)) for Intel, __attribute__((aligned(16))) for gcc 

• Can force dynamic memory allocation to be aligned 

– With Intel compiler, use _mm_malloc or _mm_free 
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Diagnosing Cache and Memory deficiencies 

• Obviously bad stride patterns may prevent vectorization at all: 

– In vector report: "vectorization possible but seems inefficient“ 

• Otherwise, may be difficult to detect 

– No obvious assembly instructions, other than a proliferation of loads and 

stores 

– Vectorization performance farther away from ideal than expected 

• Profiling tools can help 

– PerfExpert (available at TACC) 

– Visualize CPU cycle waste spent in data access (L1 cache miss, TLB 

misses, etc) 
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Lab: Using Profilers and analyzing instructions 

• Quick introduction to PerfExpert profiling tool to analyze data access 

patterns 

• Look at assembly code to determine if vectorized and/or aligned. 
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Conclusion  

• OpenMP and Vectorization are synergistic.   

– Need to use all cores, keep vector units on each core busy to achieve 

peak FLOPs on CPUs or MIC coprocessors. 

• Vectorization occurs in tight loops “automatically” by the compiler 

• Need to know where vectorization should occur, and verify that 

compiler is doing that. 

• Need to know if a compiler’s failure to vectorize is legitimate 

– Fix code if so, use #pragma if not 

• Need to be aware of caching and data access issues 

– Very fast vector units need to be well fed. 
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