

Cornell University Center for Advanced Computing

Vectorization

Aaron Birkland Consultant Cornell CAC

Vectorization: Ranger to Stampede Transition

December 11, 2012

Special thanks to Dan Stanzione, Lars Koesterke, Bill Barth, and Kent Milfield at TACC for materials and inspiration.

12/11/2012

www.cac.cornell.edu

What is Vectorization?

- Hardware Perspective: Specialized instructions, registers, or functional units to allow in-core parallelism for operations on arrays (vectors) of data.
- Compiler Perspective: Determine how and when it is possible to express computations in terms of vector instructions
- User Perspective: Determine how to write code in a manner that allows the compiler to deduce that vectorization is possible.

Vectorization: Hardware

- Goal: parallelize computations over vector arrays
- Two major approaches: pipelining, SIMD (Single Instruction Multiple Data)
- Pipelining: Several different tasks executing simultaneously
 - Popular through 1990s in supercomputing contexts
 - Large vectors, Many cycles per "instruction"
- SIMD: Many instances of a single task executing simultaneously
 - Late '90s present, commodity CPUs (x86, x64, PowerPC, etc)
 - Small vectors, few cycles per instruction
 - Newer CPUs (Sandy Bridge) can pipeline some SIMD instructions as well – best of both worlds.

Vectorization: Pipelining

Clock Cycle	R1	R2	R3	R4
1	X ₁			
2	X ₂	X ₁ ²		
3	X ₃	X ₂ ²	X ₁ ² +8	
4	X ₄	X ₃ ²	X ₂ ² +8	(X ₁ ² +8)/2
5	X ₅	X ₄ ²	X ₃ ² +8	(X ₂ ² +8)/2
6 Load		X ₅ ²	X ₄ ² +8	(X ₃ ² +8)/2
7	Square		X ₅ ² +8	(X ₄ ² +8)/2
8	•	bbA		(X ₅ ² +8)/2
Divide				

Hypothetical pipelined operations

Vectorization: Hardware: SIMD

Clock	R1	R2	R3	R4
1	[X ₁ , X ₂ X ₅]			
2		$[X_1^2, X_2^2X_5^2]$		
3			$[X_1^2+8, X_2^2+8X_5^2+8]$	
4	Load	Square	Add	[(X ₁ ² +8)/2, (X ₂ ² +8)/2 (X ₅ ² +8)/2]

Divide

Hypothetical SIMD operations

Vectorization via SIMD: Motivation

- CPU speeds reach a plateau
 - Power limitations!
 - Many "slow" transistors more efficient than fewer "fast" transistors
- Process improvements make physical space cheap
 - Moore's law, 2x every 18-24 months
 - Easy to add more "stuff"
- One solution: More cores
 - First dual core Intel CPUs appear in 2005
 - Increasing in number rapidly (e.g. 8 in Stampede, 60+ on MIC)
- Another Solution: More FPU units per core vector operations
 - First appeared on a Pentium with MMX in 1996
 - Increasing in vector width rapidly (e.g. 512-bit [8 doubles]) on MIC

Vectorization via SIMD: History

Year	Registers	Instruc	tion Set
~1997	80-bit	MMX	Integer SIMD (in x87 registers)
~1999	128-bit	SSE1	SP FP SIMD (xMM0-8)
~2001	128-bit	SSE2	DP FP SIMD (xMM0-8)
	128-bit	SSEx	
~2010	256-bit	AVX	DP FP SIMD (yMM0-16)
~2012	512-bit	(MIC)	
~2014	512-1024-bit	(Haswe	ell)

Cornell University Center for Advanced Computing

Vector Registers

SIMD Instructions

- Loading
 - movupd xmm0 ... (SSE move unaligned packed double into 128-bit)
 - vmovaps ymm0 ... (AVX move aligned packed single into 256-bit)
- Operating
 - vaddpd ymm1 ymm2 (AVX add packed double 256-bit)
 - addsd (SSE Add scalar doubles SSE, but NOT vector op!)
- KEY:
 - v = AVX
 - p, s = packed, scalar
 - u, a = unaligned, aligned
 - s, d = single, double

AVX Instructions

- Optimal for 64-bit operation
- Uses Vex prefix (V)
 - Extendable to 512-bit or 1024-bit SIMD
 - Can Reference 3 or 4 registers
 - New instructions, broadcast to registers, mask, permute, etc
- FMA (Fused Multiply Add) available soon (Haswell/AVX2)

AVX Instructions

	AVX 128-bit VEX Prefix	AVX 256-bit Vex Prefix	
Legacy SIMD			
Scalar	Yes	No	
Vector Data Movement	Yes	Yes	
Vector FP	Yes	Yes	
Vector Int	No	No	
Int	No	No	
New Functionality			
Permute (v)	Yes	Yes	
Mask (v)	Yes	Yes	
Broadcast (v)	Yes	Yes	
Insert/Extract/Zero	No	Yes	

Speed

- True SIMD parallelism typically 1 cycle per floating point computation
 - Exception: Slow operations like division, square roots
- Speedup (compared to no vector) proportional to vector width
 - 128-bit SSE 2x double, 4x single
 - 256-bit AVX 4x double, 8x single
 - 512-bit MIC 8x double, 16x single
- Hypothetical AVX example: 8 cores/CPU * 4 doubles/vector * 2.0 GHz = 64 Gflops/CPU DP
 - Pipelining could make this even greater!

Speed

- Clearly memory bandwidth is potential issue, we'll explore this later
 - Poor cache utilization, alignment, memory latency all detract from ideal
- SIMD is parallel, so Amdahl's law is in effect!
 - Serial/scalar portions of code or CPU are limiting factors
 - Theoretical speedup is only a ceiling

User Perspective

Let's take a step back – how can we leverage this power

- Program in assembly
 - Ultimate performance potential, but only for the brave
- Program in intrinsics
 - Step up from assembly, useful but risky
- Let the compiler figure it out
 - Relatively "easy" for user, "challenging" for compiler
 - Less expressive languages like C make compiler's job more difficult
 - Compiler may need some hand holding.
- Link to an optimized library that does the actual work
 - e.g. Intel MKL, written by people who know all the tricks.
 - Get benefits "for free" when running on supported platform

Vector-aware coding

- Know what makes vectorizable at all
 - "for" loops (in C) or "do" loops (in fortran) that meet certain constraints
- Know where vectorization will help
- Evaluate compiler output
 - Is it really vectorizing where you think it should?
- Evaluate execution performance
 - Compare to theoretical speedup
- Know data access patterns to maximize efficiency
- Implement fixes: directives, compilation flags, and code changes
 - Remove constructs that make vectorization impossible/impractical
 - Encourage/force vectorization when compiler doesn't, but should
 - Better memory access patterns

Writing Vector Loops

- Basic requirements of vectorizable loops:
 - Countable at runtime
 - Number of loop iterations is known before loop executes
 - No conditional termination (break statements)
 - Have single control flow
 - No Switch statements
 - 'if' statements are allowable when they can be implemented as masked assignments
 - Must be the innermost loop if nested
 - Compiler may reverse loop order as an optimization!
 - No function calls
 - Basic math is allowed: pow(), sqrt(), sin(), etc
 - Some Inline functions allowed

Conceptualizing Compiler Vectorization

- Think of vectorization in terms of loop unrolling
 - Unroll N interactions of loop, where N elements of data array fit into vector register

```
for (i=0; i<N;i++) {
    a[i]=b[i]+c[i];
}
Load b(i..i+3)
Load c(i..i+3)
Operate b+c->a
for (i=0; i<N;i+=4) {
    a[i+0]=b[i+0]+c[i+0];
    a[i+1]=b[i+1]+c[i+1];
    a[i+2]=b[i+2]+c[i+2];
    a[i+3]=b[i+3]+c[i+3];
}</pre>
```


Compiling Vector loops

- Intel Compiler:
 - Vectorization starts at optimization level -02
 - Will default to SSE instructions
 - Can embed SSE and AVX instructions in the same binary with -axAVX
 - Will run AVX on CPUs with AVX support, SSE otherwise
 - -vec-report=<n> for a vectorization report
- GCC
 - Vectorization is disabled by default, regardless of optimization level
 - Need -ftree-vectorize flag, combined with optimization > -02
 - SSE by default, -mavx -march=corei7-avx for AVX
 - -ftree-vectorizer-verbose for a vectorization report

Lab: Simple Vectorization

In this lab you will

- Use the Intel and gcc compilers to create vectorized with nonvectorized code
- Compare the performance of vectorized vs non-vectorized code
- Take an initial look at compiler vectorization reports

Lab: Simple Vectorization

- Though contrived, observed vector performance increase was almost close to ideal – almost 100% code in tight vectorizable loop
- Results for Sandy Bridge (Laptop):

Compile Options	Time
-no-vec –O3	.937s
-03	.242s
-O3 -axAVX	.125s

Challenge: Loop Dependencies

- Vectorization changes the order of computation compared to sequential case
- Compiler must be able to prove that vectorization will produce correct result.
- Need to consider independence of *unrolled* loop operations depends on vector width
- Compiler performs dependency analysis

Loop Dependencies: Read After Write

Consider the loop:

belleter the height a= {0,1,2,3,4} b = {5,6,7,8,9} for (i=1; i<N; i++) a[i] = a[i-1] + b[i];

Applying each operation sequentially: $a[1] = a[0] + b[1] \rightarrow a[1] = 0 + 6 \rightarrow a[1] = 6$ $a[2] = a[1] + b[2] \rightarrow a[2] = 6 + 7 \rightarrow a[2] = 13$ $a[3] = a[2] + b[3] \rightarrow a[3] = 13 + 8 \rightarrow a[3] = 21$ $a[4] = a[3] + b[4] \rightarrow a[4] = 21 + 9 \rightarrow a[4] = 30$

a = {0, 6, 13, 21, 30}

Loop Dependencies: Read After Write

Consider the loop:

below a loop for (i=1; i<N; i++)
a = {0,1,2,3,4}
b = {5,6,7,8,9}
for (i=1; i<N; i++)
a[i] = a[i-1] + b[i];</pre>

Applying each operation sequentially:

 $\begin{array}{l} a[1] = a[0] + b[1] \rightarrow a[1] = 0 + 6 \rightarrow a[1] = 6 \\ a[2] = a[1] + b[2] \rightarrow a[2] = 6 + 7 \rightarrow a[2] = 13 \\ a[3] = a[2] + b[3] \rightarrow a[3] = 13 + 8 \rightarrow a[3] = 21 \\ a[4] = a[3] + b[4] \rightarrow a[4] = 21 + 9 \rightarrow a[4] = 30 \end{array}$

a = {0, 6, 13, 21, 30}

Loop Dependencies: Read After Write

Now let's try vector operations: a= {0,1,2,3,4} b = {5,6,7,8,9} for (i=1; i<N; i++) a[i] = a[i-1] + b[i];

```
Applying vector operations, i=\{1,2,3,4\}:

a[i-1] = \{0,1,2,3\} (load)

b[i] = \{6,7,8,9\} (load)

\{0,1,2,3\} + \{6,7,8,9\} = \{6, 8, 10, 12\} (operate)

a[i] = \{6, 8, 10, 12\} (store)
```

```
a = {0, 6, 8, 10, 12} ≠ {0, 6, 13, 21, 30} NOT VECTORIZABLE
```


Loop Dependencies: Write after Read

Consider the loop:

belleter the heap: a = {0,1,2,3,4} b = {5,6,7,8,9} for (i=0; i<N; i++) a[i] = a[i+1] + b[i];

Applying each operation sequentially: $a[0] = a[1] + b[0] \rightarrow a[0] = 1 + 5 \rightarrow a[0] = 6$ $a[1] = a[2] + b[1] \rightarrow a[1] = 2 + 6 \rightarrow a[1] = 8$ $a[2] = a[3] + b[2] \rightarrow a[2] = 3 + 7 \rightarrow a[2] = 10$ $a[3] = a[4] + b[3] \rightarrow a[3] = 4 + 8 \rightarrow a[3] = 12$

a = {6, 8, 10, 12, 4}

Loop Dependencies: Write after Read

Now let's try vector operations: a= {0,1,2,3,4} b = {5,6,7,8,9} for (i=0; i<N; i++) a[i] = a[i+1] + b[i];

```
Applying vector operations, i=\{1,2,3,4\}:

a[i+1] = \{1,2,3,4\} (load)

b[i] = \{5,6,7,8\} (load)

\{1,2,3,4\} + \{5,6,7,8\} = \{6, 8, 10, 12\} (operate)

a[i] = \{6, 8, 10, 12\} (store)
```

```
a = {0, 6, 8, 10, 12} = {0, 6, 8, 10, 12} VECTORIZABLE
```


Loop Dependencies

- Read After Write
 - Also called "flow" dependency
 - Variable written first, then read
 - Not vectorizable

- Write after Read
 - Also called "anti" dependency
 - Variable read first, then written
 - vectorizable

for(i=0; i<N-1; i++)
a[i] = a[i+1] + b[i];</pre>

Loop Dependencies

- Read after Read
 - Not really a dependency
 - Vectorizable

for(i=0; i<N; i++)
 a[i] = b[i%2] + c[i];</pre>

- Write after Write
 - a.k.a "output" dependency
 - Variable written, then re-written
 - Not vectorizable

for(i=0; i<N; i++) a[i%2] = b[i] + c[i];</pre>

Loop Dependencies: Aliasing

- In C, pointers can hide data dependencies!
 - Memory regions they point to may overlap
- Is this safe?:

- .. Not if we give it the arguments compute (a, a+1, c);
 - Effectively, b is really a[i-1] \rightarrow Read after Write dependency
- Compilers can usually cope, add bounds checking tests (overhead)

Vectorization Reports

- Shows which loops are or are not vectorized, and why
- Intel: -vec-report=<n>
 - 0: None
 - 1: Lists vectorized loops
 - 2: Lists loops not vectorized, with explanation
 - 3: Outputs additional dependency information
 - 4: Lists loops not vectorized, without explanation
 - 5: Lists loops not vectorized, with dependency information
- Reports are essential for determining where the compiler finds a dependency
- Compiler is conservative, you need to go back and verify that there really is a dependency.

Loop Dependencies: Vectorization Hints

- Compiler must prove there is no data dependency that will affect correctness of result
- Sometimes, this is impossible
 - e.g. unknown index offset, complicated use of pointers
- Intel compiler solution: IVDEP (Ignore Vector DEPendencies) hint.
 - Tells compiler "Assume there are no dependencies"

```
subroutine
vec1(s1,M,N,x)
...
int N,double s1,int M,
int N,double *x) {
...
!DEC$ IVDEP
do i = 1,N
x(i) = x(i+M) + s1
end dovoid vec1(double s1,int M,
int N,double *x) {
...
#pragma IVDEP
for(i=0;i<N;i++) x[i]=x[i+M]+s1;
```


Compiler hints affecting vectorization

- For Intel compiler only
- Affect whether loop is vectorized or not
- #pragma ivdep
 - Assume no dependencies.
 - Compiler may vectorize loops that it would otherwise think are not vectorizable
- #pragma vector always
 - Always vectorize if technically possible to do so.
 - Overrides compiler's decision to not vectorize based upon cost
- #pragma novector
 - Do not vectorize

Loop Dependencies: Language Constructs

- C99 introduced 'restrict' keyword to language
 - Instructs compiler to assume addresses will not overlap, ever

• May need compiler flags to use, e.g. -restrict, -std=c99

Lab: Vector hinting and reports

- In this lab, we will use the Intel compiler to compile code that has a vector dependency
- By analyzing the reports and adding #pragma statements, we will see if we can get around the compiler's dependency analysis checks, and what the effects are.

Lab: Vector Hinting and Reports

- Multiple levels of vector reports can help diagnose potential issues
- Compilers (Intel) must be conservative when vectorizing loops. User markup (e.g #pragma)
- Sometimes this conservatism is warranted.
 - Can lead to incorrect results if we're not careful when we override!
- Domain of incorrect results can be influenced by vector width.

Cornell University Center for Advanced Computing

Cache and Alignment

- Optimal vectorization requires concerns beyond SIMD unit!
 - Registers: Alignment of data on 128, 256 bit boundaries
 - Cache: Cache is fast, memory is slow
 - Memory: Sequential access much faster than random/strided

Cache Utilization

- Loads/stores to L1 cache are fastest
- System memory is very slow in comparison
- If vector units are starved for data, effectiveness is reduced significantly!

Strided access

- Fastest usage pattern is "stride 1": perfectly sequential
- Best performance when CPU can load L1 cache from memory in bulk, sequential manner
- Stride 1 constructs:
 - Iterating Structs of arrays vs arrays of structs
 - Multi dimensional array:
 - Fortran: stride 1 on "inner" dimension
 - C/C++: Stride 1 on "outer" dimension

Cornell University Center for Advanced Computing

Strided access

- Striding through memory reduces effective memory bandwidth!
 - For DP, roughly 1-stride/8
- Worse than non-aligned access. Lots of memory operations to populate a cache line, vector register

Memory Strided Add* Performance

Cache and Alignment

- Consider our simple unrolling example
 - Unroll N interactions of loop
 - Convert to load/operate/store vector instructions

```
V = AVX
U = unaligned
P = packed (vector)
D = double
```

vmovapd [next a bytes] xmm0
vmovapd [next c bytes] xmm1
vaddpd xmm0, xmm1
vmovapd xmmm1 [next a bytes]

```
vmovupd [next a bytes] ymm0
vmovupd [next c bytes] ymm1
vaddpd ymm0, ymm1
vmovupd ymmm1 [next a bytes]
```


Cornell University Center for Advanced Computing

Cache and Alignment

- Vector load instructions move multiple values from cache into registers simultaneously.
- Fastest when entire cache line moved as one unit, i.e. aligned

Cornell University Center for Advanced Computing

Alignment

- Applies especially to arrays, structs
 - Iterating through multi-dimensional arrays may affect alignment if colums/rows are not a multiple of cache line length.
 - Solution: use padding and adapt your algorithm
- Alignment boundary depends on processor architecture
 - Westmere, Opteron (Lonestar, Ranger): 16 byte
 - Sandy Bridge (Stampede): 32 byte
 - MIC (Stampede): 64 byte
- Compilers are great at automatically handling alignment
 - Harder to determine if they're successful, though
 - May notice alignment issues through decreased performance
 - Glance at assembly, look for unaligned instructions in tight loops (e.g. movu.., vmovu..

Manual Alignment

- For Intel, compiler directives can force compiler to assume correct alignment
 - #pragma vector align asserts that data in the loop is aligned to the appropriate boundary
 - Be careful with SSE can segfault if you're wrong!
- Can add alignment attributes when declaring variables to guarantee they're aligned
 - Usually the compiler already accounts for this if all references are in the same file, or multiple files are compiled with -ipo
 - _declspec(align(16, 8)) for Intel, __attribute__((aligned(16))) for gcc
- Can force dynamic memory allocation to be aligned
 - With Intel compiler, use _mm_malloc or _mm_free

Diagnosing Cache and Memory deficiencies

- Obviously bad stride patterns may prevent vectorization at all:
 - In vector report: "vectorization possible but seems inefficient"
- Otherwise, may be difficult to detect
 - No obvious assembly instructions, other than a proliferation of loads and stores
 - Vectorization performance farther away from ideal than expected
- Profiling tools can help
 - PerfExpert (available at TACC)
 - Visualize CPU cycle waste spent in data access (L1 cache miss, TLB misses, etc)

Lab: Using Profilers and analyzing instructions

- Quick introduction to PerfExpert profiling tool to analyze data access patterns
- Look at assembly code to determine if vectorized and/or aligned.

Conclusion

- OpenMP and Vectorization are synergistic.
 - Need to use all cores, keep vector units on each core busy to achieve peak FLOPs on CPUs or MIC coprocessors.
- Vectorization occurs in tight loops "automatically" by the compiler
- Need to know where vectorization should occur, and verify that compiler is doing that.
- Need to know if a compiler's failure to vectorize is legitimate
 Fix code if so, use #pragma if not
- Need to be aware of caching and data access issues
 - Very fast vector units need to be well fed.