
Vectorization Lab

Parallel Computing at TACC:

Ranger to Stampede Transition

Aaron Birkland
Consultant

Cornell Center for Advanced Computing

December 11, 2012

1 Simple Vectorization

This lab serves as an introduction to using a vectorizing compiler. We will work with code
containing a tight loop that should be easily vectorizable by the compiler. Our goal is to
try out various compiler options and compare vectorized with non-vectorized code.

1.1 Setup

To begin, we will unpack the lab materials and compile the example program. Please run
this lab on Lonestar, and not Ranger.

1. Make sure you are using the bash shell. Do

echo $SHELL

you should see /bin/bash. If not, run bash to start the bash shell.

2. Unpack the lab materials into your home directory if you haven’t done so already.

$ cd
$ tar xvf ~tg459572/LABS/vector.tar
$ cd vector

3. Compile simple using the Intel compiler. We will start with an optimization level of
2, which should enable vectorization

$ icc simple.c -O2 -o simple

1

4. Use the time utility to run the program with no arguments. Normally, it would be
proper to submit the executable to be run on a compute node via the batch system.
For logistic purposes, and because the runtimes are so fast, we will be running the
quick examples on the login node directly.

$ time ./simple
1000100.000003 .. 2047102400.004084

real 0m0.256s
user 0m0.256s
sys 0m0.000s

This shows that it took a quarter second to execute.

If you’ve reached this point, then the lab is set up correctly, and everything is working
enough to continue.

1.2 Intel Compiler

We will now explore the effects of vectorization using the Intel compiler

• We noted that the Intel compiler starts applying vectorization with -O2. Let’s see if
we can view a vectorization report to see what it did.

$ icc simple.c -vec-report=2 -O2 -o simple
simple.c(19): (col. 2) remark: LOOP WAS VECTORIZED.
simple.c(26): (col. 3) remark: loop was not vectorized: not inner loop.
simple.c(25): (col. 5) remark: PERMUTED LOOP WAS VECTORIZED.

This shows that two loops were vectorized: The initial value loading loop, and our
computation loop. However, the line numbers and comments look strange. Why does
it say the inner part of our loop (line 26) was not vectorized because of “not inner
loop”, while our outer loop (line 25) was vectorized? Why does it refer to our outer
loop as a PERMUTED LOOP? Compilers are free to reverse the order of loops for
the sake of efficiency if it is safe to do so. Do you think this was the case here?

• Now that the compiler has told us that it vectorized our loops, let’s verify this by
compiling with vectorization disabled.

$ icc simple.c -no-vec -vec-report=2 -O2 -o simple_no_vec

Notice that all the vectorization reports disappeared, even though we specified report-
ing as a compile option. When vectorization is disabled, the reports disappear.

Cornell Center for Advanced Computing 2

• Run the non-vectorized program and compare execution time to our original compiled
with -O2

$ time simple_no_vec
1000099.999977 .. 2047102400.017378

real 0m1.391s
user 0m1.360s
sys 0m0.004s

$ time simple
1000100.000003 .. 2047102400.004084

real 0m0.264s
user 0m0.256s
sys 0m0.000s

Wow, quite a difference! How much of a speedup did you observe? How does it
compare to your expectations?

As we have seen, vectorization on the Intel compiler can be simple and straightforward.
Correlating vectorization reports with the source code can be a little bit tricky, especially
if the compiler implements optimizations such as loop reordering. However, as long as we
have some sense of what the compiler ought to be doing, this can usually be figured out
with a little effort.

1.3 GCC compiler

Different compilers can also vectorize code. Here, we try to compile the same code using
the GCC.

• Compile the simple program with -O2 and run

$ gcc -O2 simple.c -o simple_gcc
$ time ./simple_gcc
1000099.999977 .. 2047102400.017378

real 0m1.460s
user 0m1.392s
sys 0m0.020s

We see that this is similar to the Intel non-vectorized case. In fact, GCC does not
vectorize by default. Special flags are needed to enable vectorization

• Use the -ftree-vectorize and -ftree-vectorizer-verbose flags to enable GCC to vec-
torize and report

Cornell Center for Advanced Computing 3

$ gcc -O2 -ftree-vectorize -ftree-vectorizer-verbose=3 simple.c -o simple_gcc_vec

simple.c:19: note: not vectorized: unsupported use in stmt.
simple.c:26: note: accesses have the same alignment.
simple.c:26: note: accesses have the same alignment.
simple.c:26: note: LOOP VECTORIZED.
simple.c:26: note: vectorized 1 loops in function.

$ time ./simple_gcc_vec
1000099.999977 .. 2047102400.017378

real 0m0.578s
user 0m0.528s
sys 0m0.008s

As we can see, the vectorized version is much better. It’s not quite as good as the
Intel version, however. Can you tell any differences by comparing the vectorization
reports?

2 Assisted Vectorization

This lab involves code that contains a data dependency. We will use this to further explore
vectorization reports, then use directives to override the compiler’s default behaviour.

2.1 Advanced Vector Reports

We will use vector reports to examine problems the compiler is having when trying to
vectorize code.

• Compile the dependency program

$ icc -O2 -vec-report=2 dependency.c -o dependency

In the report, you will see that the compiler has vectorized some loops, but not others.
Pay particular attention to the line regarding data dependency:

dependency.c(33): (col. 2) remark: loop was not vectorized: existence of
vector dependence.

• Try to compile with different vectorization report options. The Intel compiler expects
values ranging from 0 to 5. They do not necessarily progress in order of detail. Try
each level and note the differences. Is any report level particularly enlightening?

For example, trying option 4 might look like:

Cornell Center for Advanced Computing 4

$ icc -O2 -vec-report=4 dependency.c -o dependency
dependency.c(33): (col. 2) remark: loop was not vectorized: not inner loop.
dependency.c(33): (col. 2) remark: loop was not vectorized: existence of
vector dependence.
dependency.c(47): (col. 6) remark: loop was not vectorized: not inner loop.
dependency.c(48): (col. 4) remark: loop skipped: multiversioned.

The vector report listed several ANTI and FLOW dependencies around line 33. In the code,
this is the line where compute() is called. Can you guess why the compiler chose line 33?
Also, why did the compiler find multiple kinds of dependencies?

2.2 Compiler directives

We will now use compiler directives to force the compiler to assume there is no data depen-
dency in our loop.

• dependency pragma.c is identical to our original dependency code, except for the
addition of two #pragma directives. Look at the source and find them.

• Compile the dependency pragma code:

$ icc -O2 -vec-report=3 dependency_pragma.c -o dependency_pragma

Compare the vectorization reports of dependency vs dependency pragma. Do you no-
tice where loop was not vectorized has been replaced by LOOP WAS VECTORIZED?

• Run dependency and dependency pragma to see if the vector hints increased perfor-
mance:

$ time dependency
Given value of 0
Sum is: 724215229516.70

real 0m1.428s
user 0m1.144s
sys 0m0.036s

$ time dependency_pragma
Given value of 0
Sum is: 724215229516.70

real 0m0.746s
user 0m0.664s
sys 0m0.012s

Cornell Center for Advanced Computing 5

We doubled our performance by allowing our inner loop to be vectorized!

• The dependency and dependency pragma programs can accept an integer command
line argument. This is used to supply the value of the k array offset in our main loop.
Start out by providing the value −1.

$ time dependency -1
Given value of -1
Sum is: 723293729503.86

real 0m6.008s
user 0m5.020s
sys 0m0.240s

$ time dependency_pragma -1
Given value of -1
Sum is: 723293158864.15

real 0m3.159s
user 0m2.684s
sys 0m0.204s

Notice that the Sum results are quite different! Our program gave a significantly
different result with vectorization enabled. This is because a value of -1 causes our
loop to exhibit a “read-after-write” or “flow” dependency. In dependency pragma, the
compiler was told to ignore the possibility of dependencies, so it produces an incorrect
result. Do any other values produce differing results?

3 Evaluating Assembly and Profiling

In this section, we will briefly look at evaluating vector assembly instructions produced by
the compiler, as well as characterize the performance differences between applications with
non-unit stride.

3.1 Profiling

TACC provides an excellent tool called PerfExpert for profiling applications. It can give an
easy to use picture of how effectively an application is accessing data. We won’t go into it
in much detail, but will use it to quickly glance at stride-1 vs stride-N access.

• Compile the stride and stride bad programs

$ icc -O2 stride.c -o stride
$ icc -O2 stride_bad.c -o stride_bad

Cornell Center for Advanced Computing 6

• Load the PerfExpert module

$ module load java papi perfexpert

• Submit the stride program for profiling via perf job.sh.

$ qsub perf_job.sh

Note that this script actually launches an executable called perfexpert run exp, with
our executable as an argument. This is the profiler. Results will be written to the
current directory.

• Wait until the results are available. These results will be written to a file named
experiment-PerfExpert.<jobID>.xml. Run PerfExpert to display an analysis. Give
it the arguments .1 and the name of the experiment xml file. This will direct Perf-
Expert to generate a profiling report for all routines that consume at least 10% of the
execution time.

$ perfexpert .1 experiment-PerfExpert.o836399.xml

You should see a report like the following. Note the GFLOPS section where it reports
packed (vector) and scalar computations. The performance assessment below that is
expressed in terms of clock cycles per instruction. High values means that more clock
cycles are being required to execute each instruction.. For L1, L2, or L3 caches, high
LCPI values means that clock cycles are being wasted while waiting for data to be
transferred from memory.

Input file: "experiment-PerfExpert.o836399.xml"
Total running time for "experiment-PerfExpert.o836399.xml" is 1.884 sec

Loop in function main() (100% of the total runtime)
===
ratio to total instrns % 0.........25...........50.........75........100

- floating point : 21 **********
- data accesses : 29 **************

* GFLOPS (% max) : 28 *************
- packed : 28 *************
- scalar : 0 *

performance assessment LCPI good......okay......fair......poor......bad....
* overall : 1.8 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
upper bound estimates
* data accesses : 8.6 >>+

- L1d hits : 1.3 >>>>>>>>>>>>>>>>>>>>>>>>>

Cornell Center for Advanced Computing 7

- L2d hits : 0.0 >
- L2d misses : 0.8 >>>>>>>>>>>>>>>>>
- L3d misses : 6.5 >>+

* instruction accesses : 0.1 >
- L1i hits : 0.1 >
- L2i hits : 0.0 >
- L2i misses : 0.0 >

* data TLB : 0.1 >>
* instruction TLB : 0.0 >
* branch instructions : 0.2 >>>

- correctly predicted : 0.1 >>>
- mispredicted : 0.0 >

* floating-point instr : 0.4 >>>>>>>>
- fast FP instr : 0.4 >>>>>>>>
- slow FP instr : 0.0 >

This report means that our stride 1 example performs decently at about 28GFlops,
but doesn’t have the best data access patterns.

• Take a look at stride bad.c. Notice that we change the order of array indexes in
our inner loop. Previously, we were using an effecient stride 1 construct. With this
change, we are using stride >> 1. We change

a[i][j] += b[i][j];

to

a[j][i] += b[i][j];

• Next submit the stride bad program and view its results with PerfExpert

$ qsub perf_job_bad.sh

Then when the results are ready

$ perfexpert .1 experiment-PerfExpert.o836400.xml

You’ll see that the results are much worse! We went down from 28 GFlops to 3, even
though all computations are still vectorized(packed). Most of the CPU time is wasted
with cache misses. This shows us that poor data access patterns can completely negate
any benefits of vectorization.

3.2 Evaluating Assembly

While assembly language is sometimes cryptic c and hard to understand, it can be useful
to glance at the assembly instructions of a vectorized program to verify that a loop has
vectorized well. In particular, it is helpful to get a quick sense of how many aligned vs
unaligned instructions are being issues, or look for occurrences of scalar instructions in
sections that ought to be vectorized.

Cornell Center for Advanced Computing 8

3.3 A look at assembly

The gnu binutils package contains some very useful utilities for examining the assembly of bi-
naries. In this exercise, we’ll look at objdump to dump an executable’s assembly instructions
and correlate them with the source code.

• Compile the stride program. This performs simple addition between two dimensional
arrays. We will compile with the -g option to include debugging symbols in the binary.
This will allow us to correlate the code with the assembler instructions.

$ icc -g -O2 stride.c -o stride

• Use objdump to dump the assembly. We will dump it to a file in order to look at it:

$ objdump -S stride > stride.out

• Open the file stride.out, and look for an occurrence of sum elements() in the text
next to a block of assembly instructions

sum_elements();
4009de: 0f 28 04 c5 00 46 60 movaps 0x604600(,%rax,8),%xmm0
4009e5: 00
4009e6: 66 0f 58 04 c5 00 4e addpd 0x300f4e00(,%rax,8),%xmm0
4009ed: 0f 30
4009ef: 0f 29 04 c5 00 46 60 movaps %xmm0,0x604600(,%rax,8)
4009f6: 00
4009f7: 48 83 c0 02 add $0x2,%rax
4009fb: 48 3d 00 e1 f5 05 cmp $0x5f5e100,%rax
400a01: 72 db jb 4009de <main+0x15e>

This is the content of our primary loop. In terms of assembly, this looks “good”. We
see simple, aligned vector instructions that bear some resemblance to our task. If we
instead saw movups, we would know that the data is unaligned. Likewise, addsd would
imply scalar addition rather than vector addition.

Cornell Center for Advanced Computing 9

