
MapReduce and Hadoop

Aaron Birkland

Cornell Center for Advanced Computing

Motivation

• Simple programming model for Big Data

– Distributed, parallel – but hides this

• Established success at petabyte scale

– Internet search indexes, analysis

– Google, yahoo facebook

• Recently: 8000 nodes sort 10PB in 6.5 hours

• Open source frameworks with different goals

– Hadoop, phoenix

• Lots of research in last 5 years

– Adapt scientific computation algorithms to MapReduce, performance
analysis

May 16-17, 2012 www.cac.cornell.edu 2

A programming model with some nice
consequences

• Map(D) → list(Ki, Vi)

• Reduce(Ki, list(Vi)) → list(Vf)

• Map: “Apply a function to every member of dataset” to produce a list of
key-value pairs

– Dataset: set of values of uniform type D

• Image blobs, lines of text, individual points, etc

– Function: transforms each value into a list of zero or more key,value pairs
of types Ki, Vi

• Reduce: Given a key and all associated values, do some processing
to produce list of type Vf

• Execution over data is managed by a MapReduce framework

May 16-17, 2012 www.cac.cornell.edu 3

Canonical example: Word Count

• D = lines of text

• Ki = Single Words

• Vi = Numbers

• Vf = Word/count pairs

• Map(D) = Emit pairs containing each word and the number 1

• Reduce(Ki, list(Vi)) = Sum all the numbers in the list associated with
the given word. Emit the word and the resulting count

Map(D) → list(Ki, Vi)

Reduce(Ki, list(Vi)) → list(Vf)

May 16-17, 2012 www.cac.cornell.edu 4

Canonical example: Word Count

absence of evidence

is not evidence of

absence

(absence, 1)

(of, 1)

(evidence, 1)

(is, 1)

(not, 1)

(evidence, 1)

(of, 1)

(absence, 1)

Map(D) → list(Ki, Vi)

(of, 1)

(evidence, 1)

(absence, 1)

(absence, 1)

(of, 1)

(of, 1)

(evidence, 1)

(evidence, 1)

(is, 1)

(not, 1)

(absence, 2)

(of, 2)

(evidence, 2)

(is, 1)

(not, 1)

Somehow need to group by keys so Reduce can be given all associated values!

Reduce(Ki, list(Vi)) → list(Vf)

May 16-17, 2012 www.cac.cornell.edu 5

Opportunities for Parallelism?

absence of evidence

is not evidence of

absence

(absence, 1)

(of, 1)

(evidence, 1)

(is, 1)

(not, 1)

(evidence, 1)

(of, 1)

(absence, 1)

(of, 1)

(evidence, 1)

(absence, 1)

(absence, 1)

(of, 1)

(of, 1)

(evidence, 1)

(evidence, 1)

(is, 1)

(not, 1)

(absence, 2)

(of, 2)

(evidence, 2)

(is, 1)

(not, 1)

Promising Promising Worrisome

May 16-17, 2012 www.cac.cornell.edu 6

Opportunities for Parallelism

• Map and Reduce functions are independent

– No explicit communication between them

– Grouping phase between Map and Reduce is the only point of data
exchange

• Individual Map, Reduce results depend only on input value.

– Order of data, execution does not matter in the end.

• Input data read in parallel

• Output data written in parallel

May 16-17, 2012 www.cac.cornell.edu 7

Parallel, Distributed execution
absence of evidence
is not evidence of
absence

absence of evidence is not evidence of absence

(absence, 1)
(of, 1)
(evidence, 1)

(is, 1)
(not, 1)
(evidence, 1)
(of, 1)

(absence, 1)

(absence, 1)
(absence, 1)

(of, 1)
(of, 1)

(not, 1) (is, 1) (evidence, 1)
(evidence, 1)

(absence, 2) (not, 1) (of, 2) (is, 1) (evidence, 2)

(absence, 2)
(not, 1)
(of, 2)

(is, 1)
(evidence, 2)

M
a
p

R
e
d
u
c
e

May 16-17, 2012 www.cac.cornell.edu 8

Full Parallel Pipeline

Split

Read Map

(Combine)

Group

Partition

Reduce Write

May 16-17, 2012 www.cac.cornell.edu 9

Full Parallel Pipeline

Split – Divide data into parallel streams

• Use features of underlying storage technology

• File sharding, locality information, parallel data formats

May 16-17, 2012 www.cac.cornell.edu 10

Full Parallel Pipeline

Read – Chop data into iterable units

• Most common in MapReduce world – Lines of Text

• Can be arbitrary simple or complex –integer arrays, pdf documents,

mesh fragments, etc.

May 16-17, 2012 www.cac.cornell.edu 11

Full Parallel Pipeline

Map – Apply a function, return a list of keys/values

May 16-17, 2012 www.cac.cornell.edu 12

Full Parallel Pipeline

Combine – (optional) execute a “mini-reduce” on some set of map

output

• For optimization purposes

• May not be possible for every algorithm
May 16-17, 2012 www.cac.cornell.edu 13

Full Parallel Pipeline

Group – Group all results by key, collapse into a list of values for each

key

• Need all intermediate values before this can complete

• Automatically performed by MapReduce framework
May 16-17, 2012 www.cac.cornell.edu 14

Full Parallel Pipeline

Partition – Send grouped data to reduce processes

• Typically, just a dumb hash to evenly distribute

• Opportunities for balancing or other optimization.

May 16-17, 2012 www.cac.cornell.edu 15

Full Parallel Pipeline

Reduce – Run a computation over each aggregated result, produce a

final list of values

May 16-17, 2012 www.cac.cornell.edu 16

Full Parallel Pipeline

Write – Move Reduce results to their final destination

• Could be storage, or another MapReduce process!

May 16-17, 2012 www.cac.cornell.edu 17

Programming considerations

You must provide:

• Map, Reduce functions

You may provide:

• Combine, if it helps

• Partition function, if it matters

Framework must provide:

• Grouping and data shuffling

Framework may provide:

• Read, Write

– For simple data such as lines of
text

• Split

– For parallel storage or data
formats it knows about

May 16-17, 2012 www.cac.cornell.edu 18

Benefits

• Presents an easy-to-use programming model

– No synchronization, communication by individual components. Ugly
details hidden by framework.

• Execution managed by a framework

– Failure recovery (Maps/Reduces can always be re-run if necessary)

– Speculative execution (Several processes operate on same data, whoever
finishes first wins)

– Load balancing

• Adapt and optimize for different storage paradigms

May 16-17, 2012 www.cac.cornell.edu 19

Drawbacks

• Grouping/partitioning is serial!

– Need to wait for all map tasks to complete before any reduce tasks can be
run

• Some algorithms may be hard to conceptualize in MapReduce.

• Some algorithms may be inefficient to express in terms of Map
Reduce

May 16-17, 2012 www.cac.cornell.edu 20

Hadoop

• Open Source MapReduce framework in Java

– Spinoff from Nuch web crawler project

• HDFS – Hadoop Distributed Filesystem

– Distributed, fault-tolerant, sharding

• Many sub-projects

– Pig: Data-flow and execution language. Scripting for MapReduce

– Hive: SQL-like language for analyzing data

– Mahout: Machine learning and data mining libraries

• K-means clustering, Singular Value Decomposition, Bayesian classification

May 16-17, 2012 www.cac.cornell.edu 21

Hadoop

• User provides java classes for Map, Reduce functions

– Can subclass or implement virtually every aspect of MapReduce pipeline
or scheduling

• Streaming mode to STDIN, STDOUT of external map, reduce
processes (can be implemented in any language)

– Lots of scientific data that goes beyond lines of text

– Lots of existing/legacy code that can be adapted/wrapped into a Map or
Reduce stage.

stream -input /dataDir/dataFile

-file myMapper.sh -mapper “myMapper.sh"

-file myReducer.sh -reducer “myReducer.sh"

-output /dataDir/myResults

May 16-17, 2012 www.cac.cornell.edu 22

HDFS

• Data distributed among compute nodes

– Sharding: 64MB chunks

– Redundancy

• Small number of large files

• Not quite POSIX file semantics

– No random write, append

• Write-once read many

• Favor throughput over latency

• Streaming/sequential access to files

May 16-17, 2012 www.cac.cornell.edu 23

HDFS

1

2

3

4

4 3

1
DataNode

3 1

2
DataNode

4 2

3
DataNode

2 1

4
DataNode

NameNode

R
e
p
lic

a
tio

n

Sharding

May 16-17, 2012 www.cac.cornell.edu 24

4

2

1

3

HDFS + MapReduce

1

2

3

4

4 3

1
DataNode

Map/Red

3 1

2
DataNode

Map/Red

4 2

3
DataNode

Map/Red

2 1

4
DataNode

Map/Red

NameNode

JobTracker

3

1

2

4

Locality

metadata

Split fn

May 16-17, 2012 www.cac.cornell.edu 25

HDFS + MapReduce

• Assume failure-prone nodes

– Data and computation recovery through redundancy

• Move computation to data

– Data is local to computation, direct-attached storage to each node

• Sequential reads on large blocks

• Minimal contention

– Simultaneous maps/reduces on a node can be controlled by configuration

May 16-17, 2012 www.cac.cornell.edu 26

Hadoop + HDFS vs HPC

4 3

1 ….

….

3 1

2 ….

….

4 2

3 ….

….

2 1

4 ….

….

….

….

….

….

….

….

….

….

1 2 3 4
May 16-17, 2012 www.cac.cornell.edu 27

Hadoop in HPC environments

• Access to local storage can be problematic

– Local storage may not be available at all

– Even if so, long-term HDFS usually not possible

• HPC relies on global storage (e.g. Lustre) via high-speed interconnect.

– What is meaning of “locality” in inherently non-local (but parallel) storage?

May 16-17, 2012 www.cac.cornell.edu 28

Hadoop @ TACC

• On Longhorn visualization cluster

• Special, local, persistent /hadoop filesystem on some machines

– 48 nodes with 2TB HDFS storage/node

– 16 nodes with 1TB HDFS storage/node, extra large memory (144GB
memory)

• Modified hadoop distribution

– Starts HDFS on allocated nodes

• Special Hadoop queue

• By request only

• Details at https://sites.google.com/site/tacchadoop

May 16-17, 2012 www.cac.cornell.edu 29

https://sites.google.com/site/tacchadoop

Still much to learn

• Most established patterns are from web and text processing (inverted
indexes, ranking, clustering, etc)

• Scientific data and algorithms much more varied

– Papers describing an existing problem applied to MapReduce are
common

• When does HDFS provide benefit over traditional global shared FS?

– Tends to do poorly for small tasks, can be a crossover point that needs to
be found

• Lots of tuning parameters

– Data skew and heterogeneity may lead to long, inefficient jobs.

May 16-17, 2012 www.cac.cornell.edu 30

Why Hadoop?

• If you find the programming model simple/easy

• If you have a data intensive workload

• If you need fault tolerance

• If you have dedicated nodes available

• If you like Java

• If you want to experiment.

May 16-17, 2012 www.cac.cornell.edu 31

