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Motivation 

• Simple programming model for Big Data 

– Distributed, parallel – but hides this       

• Established success at petabyte scale 

– Internet search indexes, analysis 

– Google, yahoo facebook 

• Recently: 8000 nodes sort 10PB in 6.5 hours 

• Open source frameworks with different goals 

– Hadoop, phoenix 

• Lots of research in last 5 years 

– Adapt scientific computation algorithms to MapReduce, performance 
analysis 
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A programming model with some nice 
consequences 

• Map(D) → list(Ki, Vi) 

• Reduce(Ki, list(Vi)) → list(Vf) 

• Map: “Apply a function to every member of dataset” to produce a list of 
key-value pairs 

– Dataset: set of values of uniform type D 

• Image blobs, lines of text, individual points, etc 

– Function: transforms each value into a list of zero or more key,value pairs 
of types Ki, Vi 

• Reduce: Given a key and all associated values, do some processing 
to produce list of type Vf 

• Execution over data is managed by a MapReduce framework 
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Canonical example: Word Count 

• D = lines of text 

• Ki = Single Words 

• Vi = Numbers 

• Vf = Word/count pairs 

• Map(D) = Emit pairs containing each word and the number 1 

• Reduce(Ki, list(Vi)) = Sum all the numbers in the list associated with 
the given word. Emit the word and the resulting count 

 

Map(D) → list(Ki, Vi) 

Reduce(Ki, list(Vi)) → list(Vf) 
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Canonical example: Word Count 
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Map(D) → list(Ki, Vi) 
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Somehow need to group by keys so Reduce can be given all associated values! 

Reduce(Ki, list(Vi)) → list(Vf) 
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Opportunities for Parallelism? 
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Opportunities for Parallelism 

• Map and Reduce functions are independent 

– No explicit communication between them 

– Grouping phase between Map and Reduce is the only point of data 
exchange 

• Individual Map, Reduce results depend only on input value. 

– Order of data, execution does not matter in the end. 

• Input data read in parallel 

• Output data written in parallel 
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Parallel, Distributed execution 
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Full Parallel Pipeline 

Split 

Read Map 

(Combine) 

Group 

Partition 

Reduce Write 
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Full Parallel Pipeline 

Split – Divide data into parallel streams 

• Use features of underlying storage technology 

• File sharding, locality information, parallel data formats 
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Full Parallel Pipeline 

Read – Chop data into iterable units 

• Most common in MapReduce world – Lines of Text 

• Can be arbitrary simple or complex –integer arrays, pdf documents, 

mesh fragments, etc. 
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Full Parallel Pipeline 

Map – Apply a function, return a list of keys/values 
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Full Parallel Pipeline 

Combine – (optional) execute a “mini-reduce” on some set of map 

output 

• For optimization purposes 

• May not be possible for every algorithm 
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Full Parallel Pipeline 

Group – Group all results by key, collapse into a list of values for each 

key 

• Need all intermediate values before this can complete 

• Automatically performed by MapReduce framework 
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Full Parallel Pipeline 

Partition – Send grouped data to reduce processes 

• Typically, just a dumb hash to evenly distribute 

• Opportunities for balancing or other optimization. 
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Full Parallel Pipeline 

Reduce – Run a computation over each aggregated result, produce a 

final list of values 

May 16-17, 2012 www.cac.cornell.edu 16 



Full Parallel Pipeline 

Write – Move Reduce results to their final destination 

• Could be storage, or another MapReduce process! 
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Programming considerations 

You must provide: 

• Map, Reduce functions 

 

You may provide:  

• Combine, if it helps 

• Partition function, if it matters 

Framework must provide: 

• Grouping and data shuffling 

 

Framework may provide: 

• Read, Write 

– For simple data such as lines of 
text 

• Split 

– For parallel storage or data 
formats it knows about 
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Benefits 

• Presents an easy-to-use programming model 

– No synchronization, communication by individual components.  Ugly 
details hidden by framework. 

• Execution managed by a framework  

– Failure recovery (Maps/Reduces can always be re-run if necessary) 

– Speculative execution (Several processes operate on same data, whoever 
finishes first wins) 

– Load balancing 

• Adapt and optimize for different storage paradigms 
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Drawbacks 

• Grouping/partitioning is serial! 

– Need to wait for all map tasks to complete before any reduce tasks can be 
run 

• Some algorithms may be hard to conceptualize in MapReduce. 

• Some algorithms may be inefficient to express in terms of Map 
Reduce 
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Hadoop 

• Open Source MapReduce framework in Java 

– Spinoff from Nuch web crawler project 

• HDFS – Hadoop Distributed Filesystem 

– Distributed, fault-tolerant, sharding 

• Many sub-projects 

– Pig: Data-flow and execution language.  Scripting for MapReduce 

– Hive: SQL-like language for analyzing data 

– Mahout: Machine learning and data mining libraries 

• K-means clustering, Singular Value Decomposition,  Bayesian classification 
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Hadoop 

• User provides java classes for Map, Reduce functions 

– Can subclass or implement virtually every aspect of MapReduce pipeline 
or scheduling 

• Streaming mode to STDIN, STDOUT of external map, reduce 
processes (can be implemented in any language) 

– Lots of scientific data that goes beyond lines of text 

– Lots of existing/legacy code that can be adapted/wrapped into a Map or 
Reduce stage. 

 

 
stream -input /dataDir/dataFile  

-file myMapper.sh -mapper “myMapper.sh"  

-file myReducer.sh -reducer “myReducer.sh"  

-output /dataDir/myResults 
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HDFS 

• Data distributed among compute nodes 

– Sharding: 64MB chunks 

– Redundancy 

• Small number of large files 

• Not quite POSIX file semantics 

– No random write, append 

• Write-once read many 

• Favor throughput over latency 

• Streaming/sequential access to files 
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HDFS + MapReduce 

• Assume failure-prone nodes 

– Data and computation recovery through redundancy 

• Move computation to data 

– Data is local to computation, direct-attached storage to each node 

• Sequential reads on large blocks 

• Minimal contention  

– Simultaneous maps/reduces on a node can be controlled by configuration  
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Hadoop + HDFS vs HPC 
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Hadoop in HPC environments 

• Access to local storage can be problematic 

– Local storage may not be available at all 

– Even if so, long-term HDFS usually not possible 

• HPC relies on global storage (e.g. Lustre) via high-speed interconnect. 

– What is meaning of “locality” in inherently non-local (but parallel) storage? 
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Hadoop @ TACC 

• On Longhorn visualization cluster 

• Special, local, persistent /hadoop filesystem on some machines 

– 48 nodes with 2TB HDFS storage/node 

– 16 nodes with 1TB HDFS storage/node, extra large memory (144GB  
memory) 

• Modified hadoop distribution 

– Starts HDFS on allocated nodes  

• Special Hadoop queue 

• By request only 

• Details at https://sites.google.com/site/tacchadoop 
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Still much to learn 

• Most established patterns are from web and text processing  (inverted 
indexes, ranking, clustering, etc) 

• Scientific data and algorithms much more varied 

– Papers describing an existing problem applied to MapReduce are 
common 

• When does HDFS provide benefit over traditional global shared FS? 

– Tends to do poorly for small tasks, can be a crossover point that needs to 
be found 

• Lots of tuning parameters 

– Data skew and heterogeneity may lead to long, inefficient jobs.  
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Why Hadoop? 

• If you find the programming model simple/easy 

• If you have a data intensive workload 

• If you need fault tolerance 

• If you have dedicated nodes available 

• If you like Java 

• If you want to experiment. 
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