
Preparing for

Highly Parallel, Heterogeneous

Coprocessing

Steve Lantz

Senior Research Associate

Cornell CAC

Workshop: Parallel Computing on Ranger and Lonestar

May 17, 2012

What Are We Talking About Here?

• Hardware trend since around 2004: processors gain more cores

(execution engines) rather than greater clock speed

– IBM POWER4 (2001) became the first chip with 2 cores, 1.1–1.9 GHz;

meanwhile, Intel’s single-core Pentium 4 was a bust at >3.8 GHz

– Top server and workstation chips in 2012 (Intel Xeon, AMD Opteron)

now have 4, 8, even 16 cores, running at 1.6–3.2 GHz

• Does it mean Moore’s Law is dead? No!

– Transistor densities are still doubling every 2 years

– Clock rates have stalled at < 4 GHz due to power consumption

– Only way to increase flop/s/watt is through greater on-die parallelism…

• If 1 chip holds 10s of the best cores, why not 100s of weaker ones?

– Around 2007–8, “Cell” chips had 1 main and 8 synergistic processors;

but then something else came along…

5/17/2012 www.cac.cornell.edu 2

Highly Parallel Hardware Is in PCs Already

• High-end graphics processing units (GPUs) contain 100s of thread

processors and RAM enough to rival CPUs in compute capability

• GPUs are being further tailored for HPC

• Lonestar example: NVIDIA Tesla M2070

– 448 CUDA cores @ 1.15 GHz

– 6GB dedicated memory

– 1.03 Tflop/s peak SP rate

– 238W power consumption

• Initially there were hardware obstacles to using GPUs for general

calculations, but these have been overcome

– ECC memory, double precision, IEEE-compliant arithmetic are built in

– What about software…?

5/17/2012 www.cac.cornell.edu 3

Tesla C2070

General Purpose Computing on GPUs (GPGPU)

• Given the right software tools, developers can write code allowing

the GPU to perform calculations usually handled by the CPU

– Stream processing: GPU executes a code “kernel” on a stream of inputs

– Exploits the GPU’s rendering pipeline, designed to transform and shade

a stream of vertices: highly parallel, very energy efficient

– Works well if kernel is multithreaded, vectorized (SIMD), pipelined

• NVIDIA CUDA (2006) is the forerunner in this area

– SDK + API that permits programmers to use the C language to code

algorithms for execution on NVIDIA GPUs (must be compiled with nvcc)

• OpenCL (2008) is a more recent, open standard originated by Apple

– C99-based language + API that enables data-parallel computation on

GPUs as well as CPUs

– Actively supported on Intel, AMD, NVIDIA, ARM platforms

5/17/2012 www.cac.cornell.edu 4

Not All Applications Are Suitable for GPGPU

• Workload must be compute intensive, i.e., any data item fetched

from main memory must take part in several GPU operations

– Reason: to reach the GPU, data travel over a “slow” PCIe interconnect

• Workload must be decomposed into many small, independent units

– Reason: GPU is only effective when all thread processors are kept busy

• Nontrivial (re)coding may be needed, based on a specialized API

– Good performance depends on very specific tuning to the hardware

(cache sizes, etc.)

– Resulting code is far less portable due to the API and special tuning

– May be avoided if a suitable kernel or library already exists

• Is there a better way for numerically-intensive applications to take

advantage of hardware trends?

5/17/2012 www.cac.cornell.edu 5

The Intel Approach: MIC

• MIC = Many Integrated Cores = a “coprocessor” on a PCIe card that

features >50 compute cores

– Represents Intel’s response to GPGPU, especially NVIDIA’s CUDA

– Incorporates lessons learned from the former “Larrabee” development

effort (which never became a product)

– Answers the question: if 8 modern Xeon cores fit on a die, how many

Pentium III’s would fit?

• Addresses the API problem: standard x86 instructions are supported

– Includes 64-bit addressing

– Other recent x86 extensions may not be available

– Special instructions are added for an extra-wide (512-bit) vector register

• MIC executables are built using familiar Intel compilers, libraries,

and analysis tools

5/17/2012 www.cac.cornell.edu 6

MIC = A Teraflop/s System on a Chip!

• 1996: ASCI Red, first system

to achieve 1 Tflop/s sustained

• 72 cabinets

5/17/2012 www.cac.cornell.edu 7

• 2011: Knights Corner, first

Tflop/s system on a chip

• 1 PCIe slot

The Knights Ferry (KNF) Coprocessor

• KNF is the early development platform for the Intel MIC architecture

– Chip + memory on a PCI Express card

– Up to 8MB coherent shared L2 cache

– Up to 32 cores, 4 threads/core, < 1.2 GHz

– SIMD vector unit (8-DP floats wide)

– In-order instruction pipeline

• Linux Micro OS (mOS) runs on MIC

– Small OS memory footprint

– Basic functionality (I/O, standards Unix commands, etc.)

– Users can telnet to MIC

• RHEL 6.0, 6.1, 6.2 or SUSE 11 SP1 runs on host

• Details for Knights Corner (KNC) have yet not been disclosed

5/17/2012 www.cac.cornell.edu 8

• PCIe card with Intel

“Knights Corner”

• Host with dual Intel Xeon

“Sandy Bridge”

Typical Configuration of a Future Stampede Node

5/17/2012 www.cac.cornell.edu 9

Linux OS Linux

micro OS

PCIe

HCA

Access from network:

ssh 192.168.0.1 (OS)

ssh 192.168.0.2

 (mOS)

Virtual IP*

service for MIC

* can’t do this with a Lonestar GPU node, e.g., which is otherwise similar

First Large-Scale MIC System: TACC Stampede

System specs from news release

• 10PF+ peak performance in initial system (1Q 2013)

– 2PF conventional cluster (Sandy Bridge)

– 8PF complementary coprocessors (KNC)

• 15PF+ after upgrade

• 14PB+ disk, 200TB+ RAM

• 56Gb/s FDR InfiniBand, fat-tree interconnect, ~75 miles of cables

– Compare Lonestar: 32Gb/s QDR (effective)

• Nearly 200 racks of compute hardware

• Integrated shared memory and remote visualization subsystems

• Total concurrency approaching 500,000 cores

5/17/2012 www.cac.cornell.edu 10

Construction Is Already Under Way at TACC

Left: water chiller plant; right: addition to main facility

Photo credit: Steve Lantz

5/17/2012 www.cac.cornell.edu 11

Programming Models for Stampede

Offload Execution

• Directives indicate data and

functions to send from CPU

to MIC for execution

• Unified source code

• Code modifications required

• Compile once with offload

flags

– Single executable includes

instructions for MIC and CPU

• Run in parallel using MPI

and/or scripting, if desired

5/17/2012 www.cac.cornell.edu 12

“Symmetric” Execution

• Message passing (MPI) on

CPUs and MICs alike

• Unified source code

• Code modifications optional

– Assign different work to

CPUs vs. MICs

– Multithread with OpenMP for

CPUs, MICs, or both

• Compile twice, 2 executables

– One for MIC, one for host

• Run in parallel using MPI

Strategies for HPC Codes

5/17/2012 www.cac.cornell.edu 13

MPI code

No change –

run on CPUs,

MICs, or both

Expand existing

hybrids; or, add

OpenMP offload

Build on libraries

like Intel MKL,

PETSc, etc.

Pros and Cons of MIC Programming Models

• Offload engine: accelerator for host

– Pros: distinct hardware gets distinct role; programmable via simple calls

to a library such as MKL, or via directives (we’ll go into depth on this)

– Cons: most work travels over PCIe; difficult to retain data on card

• “Symmetric” #1: heterogeneous MPI cores

– Pros: MPI works for all cores (though 1 MIC core < 1 server core)

– Cons: memory is insufficient to give each core a mOS plus lots of data;

fails to take good advantage of shared memory; PCIe is a bottleneck

• “Symmetric” #2: heterogeneous SMPs (symmetric multiprocessors)

– Pros: MPI/OpenMP works for both host and MIC; efficient use of limited

PCIe bandwidth and MIC memory due to single message source/sink

– Cons: hybrid programming is already tough on homogeneous SMPs;

not clear whether existing OpenMP-based hybrids scale to 50+ cores

5/17/2012 www.cac.cornell.edu 14

Using Compiler Directives to Offload Work

• OpenMP’s directives provide a natural model

– 2010: OpenMP working group starts to consider accelerator extensions

– Related efforts are launched to target specific types of accelerators…

• LEO, Language Extensions for Offload

– Intel moves forward to support processors and co-processors, initially

• OpenACC

– PGI moves forward to support GPUs, initially

• Will OpenMP 4.0 produce a compromise among all the above?

– Clearly desirable, but it’s difficult

– Other devices exist: network controllers, antenna A/D, cameras…

– Exactly what falls in the “accelerator” class? How diverse is it?

5/17/2012 www.cac.cornell.edu 15

OpenMP Offload Constructs: Base Program

• Objective: offload foo to

a device

• Use OpenMP to do the

offload

5/17/2012 www.cac.cornell.edu 16

#include <omp.h>
#define N 10000

void foo(double *, double *, double *, int);
int main(){
 int i; double a[N], b[N], c[N];
 for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;}

 ...

 foo(a,b,c,N);
}

void foo(double *a, double *b, double *c, int n){
 int i;

 for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }

OpenMP Offload Constructs: Requirements

• Direct compiler to offload

function or block

• “Decorate” function and

prototype

• Usual OpenMP

directives work on

device

5/17/2012 www.cac.cornell.edu 17

#include <omp.h>
#define N 10000
#pragma omp <offload_function_spec>
void foo(double *, double *, double *, int);
int main(){
 int i; double a[N], b[N], c[N];
 for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;}

 ...
 #pragma omp <offload_this>
 foo(a,b,c,N);
}
#pragma omp <offload_function_spec>
void foo(double *a, double *b, double *c, int n){
 int i;
 #pragma omp parallel for
 for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }

OpenMP Offload Constructs: Data Requirements

• Data must be moved to

and from the device

• Synchronous model

(move data to device at

dispatch of execution,

move back afterward)

• Control of data locality is

new to OpenMP (and

OpenACC)

5/17/2012 www.cac.cornell.edu 18

#include <omp.h>
#define N 10000
#pragma omp <offload_function_spec>
void foo(double *, double *, double *, int);
int main(){
 int i; double a[N], b[N], c[N];
 for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;}

 ...
 #pragma omp <offload_this> <data_clause>
 foo(a,b,c,N);
}
#pragma omp <offload_function_spec>
void foo(double *a, double *b, double *c, int n){
 int i;
 #pragma omp parallel for
 for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }

OpenMP Offload Constructs: Asynchronicity

• Offloaded “region” can

be done asynchronously

• Moving data

asynchronously is

another important option

5/17/2012 www.cac.cornell.edu 19

#include <omp.h>
#define N 10000
#pragma omp <offload_function_spec>
void foo(double *, double *, double *, int);
int main(){
 int i; double a[N], b[N], c[N];
 for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;}
 #pragma omp <offload_data> <async>
 ...
 #pragma omp <offload_this> <async> <data>
 foo(a,b,c,N);
}
#pragma omp <offload_function_spec>
void foo(double *a, double *b, double *c, int n){
 int i;
 #pragma omp parallel for
 for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }

Two Types of MIC Parallelism (Both Are Needed)

• OpenMP (offloading to MIC)

– Work Level Parallelization (threads)

– Requires management of asynchronous “processes”

– It’s all about sharing work and scheduling

• Vectorization

– “Lock step” Instruction Level Parallelization (SIMD)

– Requires management of synchronized instruction execution

– It’s all about finding simultaneous operations

• To fully utiltize MIC, both types of parallelism should be identified

and exploited

5/17/2012 www.cac.cornell.edu 20

Vectorization Matters Too

• Vectorization, or SIMD processing, enables simultaneous,

independent operation on multiple data operands with a single

instruction. (Large arrays should provide a constant stream of data.)

• Vector reawakening

– Pre-Sandy Bridge – DP* vector units are only 2 wide (SSE)

– Sandy Bridge – DP* vector units are 4 wide (AVX)

– MIC – DP* vector units are 8 wide! (VEX)

• Unvectorized loops lose 4x performance on Sandy Bridge and 8x

performance on MIC!

• Evaluate performance with vectorization compiler options turned on

and off (“-no-vec”) to assess overall vectorization.

*DP = double precision (8 bytes, 64 bits)

5/17/2012 www.cac.cornell.edu 21

Working with a Vectorizing Compiler

• Compilers are good at vectorizing inner loops, but they need help

– Make sure each iteration is independent

– Align data to match register sizes and cache line boundaries

• Compilers will look for vectorization opportunities starting at -O2

– To apply the latest relevant vector instructions for the given architecture:

-x<simd_instr_set>

– To examine assembly code, myprog.s: -S

– To confirm with a vector report: -vec-report=<n>, n=“verboseness”

5/17/2012 www.cac.cornell.edu 22

% ifort -xHOST -vec-report=4 prog.f90 -c
prog.f90(31): (col. 11) remark:
 loop was not vectorized: existence of vector dependence

Dreams for Future Software Convergence

5/17/2012 www.cac.cornell.edu 23

What would application programmers find most desirable?

• Stay with standard languages, language extensions, and compilers

– Move away from CUDA and special compilers

• Operate at a high level

– Avoid “intrinsics” that resemble assembly language

• Express programs in terms of generic parallel tasks

– De-emphasize APIs based on specific realizations, like threads

Maybe we’re getting close…

• Compilers support vectorization and OpenMP (CL? ACC?)

• There’s plenty of room for improvement in the emerging standards

What Does All This Mean for Me?

• Next-generation algorithms and programs will need to run well on

architectures like those just described

– Power efficiency will inevitably drive hardware designs in this direction

– Mobile processors are just as power-constrained as HPC behemoths;

the design goals align

– It seems likely that even workstations and laptops will soon come

equipped with many-core coprocessors of some type

• Therefore, finding and expressing parallelism in your computational

workload will become increasingly important

– Codes must be flexible enough to deal with heterogeneous resources

– Asynchronous, adaptable methods may eventually be favored

5/17/2012 www.cac.cornell.edu 24

Reference

• Much of the information in this talk was gathered from presentations

at the TACC–Intel Highly Parallel Computing Symposium, Austin,

Texas, April 10–11, 2012: http://www.tacc.utexas.edu/ti-hpcs12.

5/17/2012 www.cac.cornell.edu 25

http://www.tacc.utexas.edu/ti-hpcs12
http://www.tacc.utexas.edu/ti-hpcs12
http://www.tacc.utexas.edu/ti-hpcs12

