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What Are We Talking About Here? 

• Hardware trend since around 2004: processors gain more cores 

(execution engines) rather than greater clock speed 

– IBM POWER4 (2001) became the first chip with 2 cores, 1.1–1.9 GHz; 

meanwhile, Intel’s single-core Pentium 4 was a bust at >3.8 GHz 

– Top server and workstation chips in 2012 (Intel Xeon, AMD Opteron) 

now have 4, 8, even 16 cores, running at 1.6–3.2 GHz 

• Does it mean Moore’s Law is dead? No! 

– Transistor densities are still doubling every 2 years 

– Clock rates have stalled at < 4 GHz due to power consumption 

– Only way to increase flop/s/watt is through greater on-die parallelism… 

• If 1 chip holds 10s of the best cores, why not 100s of weaker ones? 

– Around 2007–8, “Cell” chips had 1 main and 8 synergistic processors; 

but then something else came along…  
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Highly Parallel Hardware Is in PCs Already  

• High-end graphics processing units (GPUs) contain 100s of thread 

processors and RAM enough to rival CPUs in compute capability 

• GPUs are being further tailored for HPC 

• Lonestar example: NVIDIA Tesla M2070 

– 448 CUDA cores @ 1.15 GHz 

– 6GB dedicated memory 

– 1.03 Tflop/s peak SP rate 

– 238W power consumption  

• Initially there were hardware obstacles to using GPUs for general 

calculations, but these have been overcome 

– ECC memory, double precision, IEEE-compliant arithmetic are built in 

– What about software…? 
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Tesla C2070 



General Purpose Computing on GPUs (GPGPU) 

• Given the right software tools, developers can write code allowing 

the GPU to perform calculations usually handled by the CPU 

– Stream processing: GPU executes a code “kernel” on a stream of inputs 

– Exploits the GPU’s rendering pipeline, designed to transform and shade 

a stream of vertices: highly parallel, very energy efficient 

– Works well if kernel is multithreaded, vectorized (SIMD), pipelined 

• NVIDIA CUDA (2006) is the forerunner in this area 

– SDK + API that permits programmers to use the C language to code 

algorithms for execution on NVIDIA GPUs (must be compiled with nvcc) 

• OpenCL (2008) is a more recent, open standard originated by Apple 

– C99-based language + API that enables data-parallel computation on 

GPUs as well as CPUs 

– Actively supported on Intel, AMD, NVIDIA, ARM platforms 

5/17/2012 www.cac.cornell.edu 4 



Not All Applications Are Suitable for GPGPU 

• Workload must be compute intensive, i.e., any data item fetched 

from main memory must take part in several GPU operations 

– Reason: to reach the GPU, data travel over a “slow” PCIe interconnect 

• Workload must be decomposed into many small, independent units 

– Reason: GPU is only effective when all thread processors are kept busy 

• Nontrivial (re)coding may be needed, based on a specialized API 

– Good performance depends on very specific tuning to the hardware 

(cache sizes, etc.) 

– Resulting code is far less portable due to the API and special tuning 

– May be avoided if a suitable kernel or library already exists 

• Is there a better way for numerically-intensive applications to take 

advantage of hardware trends? 
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The Intel Approach: MIC 

• MIC = Many Integrated Cores = a “coprocessor” on a PCIe card that 

features >50 compute cores 

– Represents Intel’s response to GPGPU, especially NVIDIA’s CUDA 

– Incorporates lessons learned from the former “Larrabee” development 

effort (which never became a product) 

– Answers the question: if 8 modern Xeon cores fit on a die, how many 

Pentium III’s would fit? 

• Addresses the API problem: standard x86 instructions are supported 

– Includes 64-bit addressing 

– Other recent x86 extensions may not be available 

– Special instructions are added for an extra-wide (512-bit) vector register 

• MIC executables are built using familiar Intel compilers, libraries, 

and analysis tools 
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MIC = A Teraflop/s System on a Chip! 

 

 

 

 

 

 

 

 

• 1996: ASCI Red, first system 

to achieve 1 Tflop/s sustained 

• 72 cabinets 
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• 2011: Knights Corner, first 

Tflop/s system on a chip 

• 1 PCIe slot 



The Knights Ferry (KNF) Coprocessor 

• KNF is the early development platform for the Intel MIC architecture 

– Chip + memory on a PCI Express card 

– Up to 8MB coherent shared L2 cache 

– Up to 32 cores, 4 threads/core, < 1.2 GHz 

– SIMD vector unit (8-DP floats wide) 

– In-order instruction pipeline 

• Linux Micro OS (mOS) runs on MIC  

– Small OS memory footprint  

– Basic functionality (I/O, standards Unix commands, etc.)  

– Users can telnet to MIC 

• RHEL 6.0, 6.1, 6.2 or SUSE 11 SP1 runs on host 

• Details for Knights Corner (KNC) have yet not been disclosed 
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• PCIe card with Intel 

“Knights Corner” 

• Host with dual Intel Xeon 

“Sandy Bridge” 

Typical Configuration of a Future Stampede Node 
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Linux OS Linux 

micro OS 

PCIe 

HCA 

Access from network: 

ssh 192.168.0.1 (OS) 

ssh 192.168.0.2 

       (mOS) 

Virtual IP* 

service for MIC 

* can’t do this with a Lonestar GPU node, e.g., which is otherwise similar 



First Large-Scale MIC System: TACC Stampede 

System specs from news release 

• 10PF+ peak performance in initial system (1Q 2013)  

– 2PF conventional cluster (Sandy Bridge)  

– 8PF complementary coprocessors (KNC)  

• 15PF+ after upgrade  

• 14PB+ disk, 200TB+ RAM  

• 56Gb/s FDR InfiniBand, fat-tree interconnect, ~75 miles of cables 

– Compare Lonestar: 32Gb/s QDR (effective) 

• Nearly 200 racks of compute hardware  

• Integrated shared memory and remote visualization subsystems  

• Total concurrency approaching 500,000 cores  

 

5/17/2012 www.cac.cornell.edu 10 



Construction Is Already Under Way at TACC 

Left: water chiller plant; right: addition to main facility 

 

 

 

 

 

 

 

 

 

 

 

 
 

Photo credit: Steve Lantz 
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Programming Models for Stampede 

Offload Execution  

• Directives indicate data and 

functions to send from CPU 

to MIC for execution 

• Unified source code  

• Code modifications required 

• Compile once with offload 

flags 

– Single executable includes 

instructions for MIC and CPU 

• Run in parallel using MPI 

and/or scripting, if desired 
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“Symmetric” Execution 

• Message passing (MPI) on 

CPUs and MICs alike 

• Unified source code 

• Code modifications optional 

– Assign different work to 

CPUs vs. MICs 

– Multithread with OpenMP for 

CPUs, MICs, or both 

• Compile twice, 2 executables 

– One for MIC, one for host 

• Run in parallel using MPI 

 



Strategies for HPC Codes 

5/17/2012 www.cac.cornell.edu 13 

MPI code 

No change – 

run on CPUs, 

MICs, or both 

Expand existing 

hybrids; or, add 

OpenMP offload 

Build on libraries 

like Intel MKL, 

PETSc, etc. 



Pros and Cons of MIC Programming Models 

• Offload engine: accelerator for host 

– Pros: distinct hardware gets distinct role; programmable via simple calls 

to a library such as MKL, or via directives (we’ll go into depth on this) 

– Cons: most work travels over PCIe; difficult to retain data on card 

• “Symmetric” #1: heterogeneous MPI cores 

– Pros: MPI works for all cores (though 1 MIC core < 1 server core) 

– Cons: memory is insufficient to give each core a mOS plus lots of data; 

fails to take good advantage of shared memory; PCIe is a bottleneck 

• “Symmetric” #2: heterogeneous SMPs (symmetric multiprocessors) 

– Pros: MPI/OpenMP works for both host and MIC; efficient use of limited 

PCIe bandwidth and MIC memory due to single message source/sink 

– Cons: hybrid programming is already tough on homogeneous SMPs; 

not clear whether existing OpenMP-based hybrids scale to 50+ cores 
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Using Compiler Directives to Offload Work 

• OpenMP’s directives provide a natural model 

– 2010: OpenMP working group starts to consider accelerator extensions 

– Related efforts are launched to target specific types of accelerators… 

• LEO, Language Extensions for Offload 

– Intel moves forward to support processors and co-processors, initially 

• OpenACC 

– PGI moves forward to support GPUs, initially 

• Will OpenMP 4.0 produce a compromise among all the above? 

– Clearly desirable, but it’s difficult 

– Other devices exist: network controllers, antenna A/D, cameras… 

– Exactly what falls in the “accelerator” class? How diverse is it? 
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OpenMP Offload Constructs: Base Program 

 

 

• Objective: offload foo to 

a device  

• Use OpenMP to do the 

offload 
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#include <omp.h>  
#define N 10000  
 
void foo(double *, double *, double *, int ); 
int main(){  
     int i; double a[N], b[N], c[N];  
     for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;} 
 
     ... 
 
     foo(a,b,c,N);  
}  
 
void foo(double *a, double *b, double *c, int n){  
     int i; 
 
     for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }  



OpenMP Offload Constructs: Requirements 

 

 

• Direct compiler to offload 

function or block  

• “Decorate” function and 

prototype  

• Usual OpenMP 

directives work on 

device  
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#include <omp.h>  
#define N 10000  
#pragma omp <offload_function_spec>  
void foo(double *, double *, double *, int );  
int main(){  
     int i; double a[N], b[N], c[N];  
     for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;}  
 
     ... 
     #pragma omp <offload_this>  
     foo(a,b,c,N);  
}  
#pragma omp <offload_function_spec>  
void foo(double *a, double *b, double *c, int n){  
     int i;  
     #pragma omp parallel for  
     for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }   



OpenMP Offload Constructs: Data Requirements 

 

 

• Data must be moved to 

and from the device 

• Synchronous model 

(move data to device at 

dispatch of execution, 

move back afterward)  

• Control of data locality is 

new to OpenMP (and 

OpenACC) 
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#include <omp.h>  
#define N 10000  
#pragma omp <offload_function_spec>  
void foo(double *, double *, double *, int );  
int main(){  
     int i; double a[N], b[N], c[N];  
     for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;}  
 
     ... 
     #pragma omp <offload_this> <data_clause>  
     foo(a,b,c,N);  
}  
#pragma omp <offload_function_spec>  
void foo(double *a, double *b, double *c, int n){  
     int i;  
     #pragma omp parallel for  
     for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }   



OpenMP Offload Constructs: Asynchronicity 

 

 

• Offloaded “region” can 

be done asynchronously  

• Moving data 

asynchronously is 

another important option  
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#include <omp.h>  
#define N 10000  
#pragma omp <offload_function_spec>  
void foo(double *, double *, double *, int );  
int main(){ 
     int i; double a[N], b[N], c[N];  
     for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;}  
     #pragma omp <offload_data> <async>  
     ... 
     #pragma omp <offload_this> <async> <data>  
     foo(a,b,c,N);  
}  
#pragma omp <offload_function_spec>  
void foo(double *a, double *b, double *c, int n){  
     int i;  
     #pragma omp parallel for  
     for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }   



Two Types of MIC Parallelism (Both Are Needed) 

• OpenMP (offloading to MIC)  

– Work Level Parallelization (threads)  

– Requires management of asynchronous “processes” 

– It’s all about sharing work and scheduling  

• Vectorization  

– “Lock step” Instruction Level Parallelization (SIMD)  

– Requires management of synchronized instruction execution 

– It’s all about finding simultaneous operations 

• To fully utiltize MIC, both types of parallelism should be identified 

and exploited 
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Vectorization Matters Too 

• Vectorization, or SIMD processing, enables simultaneous, 

independent operation on multiple data operands with a single 

instruction. (Large arrays should provide a constant stream of data.)  

• Vector reawakening  

– Pre-Sandy Bridge – DP* vector units are only 2 wide (SSE) 

– Sandy Bridge  – DP* vector units are 4 wide (AVX) 

– MIC  – DP* vector units are 8 wide! (VEX) 

• Unvectorized loops lose 4x performance on Sandy Bridge and 8x 

performance on MIC!  

• Evaluate performance with vectorization compiler options turned on 

and off (“-no-vec”) to assess overall vectorization. 

 

*DP = double precision (8 bytes, 64 bits) 
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Working with a Vectorizing Compiler 

• Compilers are good at vectorizing inner loops, but they need help 

– Make sure each iteration is independent 

– Align data to match register sizes and cache line boundaries 

• Compilers will look for vectorization opportunities starting at -O2  

– To apply the latest relevant vector instructions for the given architecture: 

-x<simd_instr_set> 

– To examine assembly code, myprog.s: -S 

– To confirm with a vector report: -vec-report=<n>, n=“verboseness”  
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% ifort -xHOST -vec-report=4 prog.f90 -c 
prog.f90(31): (col. 11) remark: 
          loop was not vectorized: existence of vector dependence 



Dreams for Future Software Convergence 
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What would application programmers find most desirable? 

• Stay with standard languages, language extensions, and compilers 

– Move away from CUDA and special compilers  

• Operate at a high level 

– Avoid “intrinsics” that resemble assembly language 

• Express programs in terms of generic parallel tasks 

– De-emphasize APIs based on specific realizations, like threads 

 

Maybe we’re getting close… 

• Compilers support vectorization and OpenMP (CL? ACC?) 

• There’s plenty of room for improvement in the emerging standards 

 



What Does All This Mean for Me? 

• Next-generation algorithms and programs will need to run well on 

architectures like those just described 

– Power efficiency will inevitably drive hardware designs in this direction 

– Mobile processors are just as power-constrained as HPC behemoths; 

the design goals align 

– It seems likely that even workstations and laptops will soon come 

equipped with many-core coprocessors of some type 

• Therefore, finding and expressing parallelism in your computational 

workload will become increasingly important 

– Codes must be flexible enough to deal with heterogeneous resources 

– Asynchronous, adaptable methods may eventually be favored 
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Reference 

• Much of the information in this talk was gathered from presentations 

at the TACC–Intel Highly Parallel Computing Symposium, Austin, 

Texas, April 10–11, 2012: http://www.tacc.utexas.edu/ti-hpcs12. 
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