9eare Cornell University

7 Center for Advanced Computing

Preparing for
Highly Parallel, Heterogeneous
Coprocessing

Steve Lantz
Senior Research Associate
Cornell CAC

Workshop: Parallel Computing on Ranger and Lonestar
May 17, 2012

GD_) Cornell University

@

Center for Advanced Computing

What Are We Talking About Here?

« Hardware trend since around 2004: processors gain more cores
(execution engines) rather than greater clock speed

— IBM POWER4 (2001) became the first chip with 2 cores, 1.1-1.9 GHz;
meanwhile, Intel’s single-core Pentium 4 was a bust at >3.8 GHz

— Top server and workstation chips in 2012 (Intel Xeon, AMD Opteron)
now have 4, 8, even 16 cores, running at 1.6—-3.2 GHz

* Does it mean Moore’s Law is dead? No!
— Transistor densities are still doubling every 2 years
— Clock rates have stalled at < 4 GHz due to power consumption
— Only way to increase flop/s/watt is through greater on-die parallelism...
« |If 1 chip holds 10s of the best cores, why not 100s of weaker ones?
— Around 2007-8, “Cell” chips had 1 main and 8 synergistic processors;
but then something else came along...

5/17/2012 www.cac.cornell.edu

Cornell University
t:) Center for Advanced Computing

Highly Parallel Hardware Is in PCs Already

* High-end graphics processing units (GPUs) contain 100s of thread
processors and RAM enough to rival CPUs in compute capability

 GPUs are being further tailored for HPC
« Lonestar example: NVIDIA Tesla M2070

— 448 CUDA cores @ 1.15 GHz

— 6GB dedicated memory

— 1.03 Tflop/s peak SP rate

— 238W power consumption :
 Initially there were hardware obstacles to using GPUs for general

calculations, but these have been overcome
— ECC memory, double precision, IEEE-compliant arithmetic are built in
— What about software...?

5/17/2012 www.cac.cornell.edu

o7 Cornell University
@E) Center for Advanced Computing

General Purpose Computing on GPUs (GPGPU)

« Given the right software tools, developers can write code allowing
the GPU to perform calculations usually handled by the CPU

— Stream processing: GPU executes a code “kernel” on a stream of inputs

— Exploits the GPU’s rendering pipeline, designed to transform and shade
a stream of vertices: highly parallel, very energy efficient

— Works well if kernel is multithreaded, vectorized (SIMD), pipelined
* NVIDIA CUDA (2006) is the forerunner in this area

— SDK + API that permits programmers to use the C language to code
algorithms for execution on NVIDIA GPUs (must be compiled with nvcc)

« OpenCL (2008) is a more recent, open standard originated by Apple

— C99-based language + API that enables data-parallel computation on
GPUs as well as CPUs

— Actively supported on Intel, AMD, NVIDIA, ARM platforms

5/17/2012 www.cac.cornell.edu 4

GD_) Cornell University

@

Center for Advanced Computing

Not All Applications Are Suitable for GPGPU

 Workload must be compute intensive, i.e., any data item fetched
from main memory must take part in several GPU operations

— Reason: to reach the GPU, data travel over a “slow” PCle interconnect
» Workload must be decomposed into many small, independent units

— Reason: GPU is only effective when all thread processors are kept busy
* Nontrivial (re)coding may be needed, based on a specialized API

— Good performance depends on very specific tuning to the hardware
(cache sizes, etc.)

— Resulting code is far less portable due to the API and special tuning
— May be avoided if a suitable kernel or library already exists

» Is there a better way for numerically-intensive applications to take
advantage of hardware trends?

5/17/2012 www.cac.cornell.edu 5

5o Cornell University
(&)

Center for Advanced Computing

The Intel Approach: MIC

 MIC = Many Integrated Cores = a “coprocessor” on a PCle card that
features >50 compute cores
— Represents Intel’s response to GPGPU, especially NVIDIA's CUDA
— Incorporates lessons learned from the former “Larrabee” development

effort (which never became a product)
— Answers the question: if 8 modern Xeon cores fit on a die, how many

Pentium IlI's would fit?
« Addresses the API problem: standard x86 instructions are supported

— Includes 64-bit addressing
— Other recent x86 extensions may not be available
— Special instructions are added for an extra-wide (512-bit) vector register

 MIC executables are built using familiar Intel compilers, libraries,
and analysis tools

5/17/2012 www.cac.cornell.edu

(EFTU‘ Cornell University

2J§ Center for Advanced Computing

MIC = A Teraflop/s System on a Chip!

« 1996: ASCI Red, first system « 2011: Knights Corner, first
to achieve 1 Tflop/s sustained Tflop/s system on a chip
e 72 cabinets « 1 PCle slot

5/17/2012 www.cac.cornell.edu 7

o7 Cornell University
@E) Center for Advanced Computing

The Knights Ferry (KNF) Coprocessor

« KNF is the early development platform for the Intel MIC architecture
— Chip + memory on a PCI Express card
— Up to 8MB coherent shared L2 cache
— Up to 32 cores, 4 threads/core, < 1.2 GHz
— SIMD vector unit (8-DP floats wide)
— In-order instruction pipeline

* Linux Micro OS (nOS) runs on MIC
— Small OS memory footprint
— Basic functionality (I/O, standards Unix commands, etc.)
— Users can telnet to MIC

« RHEL 6.0, 6.1, 6.2 or SUSE 11 SP1 runs on host

» Details for Knights Corner (KNC) have yet not been disclosed

5/17/2012 www.cac.cornell.edu 8

(EFTU‘ Cornell University

2J§ Center for Advanced Computing

Typical Configuration of a Future Stampede Node

 Host with dual Intel Xeon « PCle card with Intel

“Sandy Bridge” Access from network: “Knights Corner”
ssh 192.168.0.1 (OS)
ssh 192.168.0.2
/ (1OS) / \
Linux OS Linux
micro OS

Virtual 1P*
service for MIC

* can’t do this with a Lonestar GPU node, e.g., which is otherwise similar

5/17/2012 www.cac.cornell.edu

so/v Cornell University
(&)

Center for Advanced Computing

First Large-Scale MIC System: TACC Stampede

System specs from news release

* 10PF+ peak performance in initial system (1Q 2013)
— 2PF conventional cluster (Sandy Bridge)
— 8PF complementary coprocessors (KNC)

« 15PF+ after upgrade
« 14PB+ disk, 200TB+ RAM

e 56Gb/s FDR InfiniBand, fat-tree interconnect, ~75 miles of cables
— Compare Lonestar: 32Gb/s QDR (effective)

* Nearly 200 racks of compute hardware
* Integrated shared memory and remote visualization subsystems
« Total concurrency approaching 500,000 cores

5/17/2012 www.cac.cornell.edu 10

so/v Cornell University
(&)

Center for Advanced Computing

Construction Is Already Under Way at TACC

] Left: water chiller plant; right: addition to main facility

5/17/2012 www.cac.cornell.edu 11

(EFTU‘ Cornell University

2J§ Center for Advanced Computing

Programming Models for Stampede

Offload Execution “Symmetric” Execution

« Directives indicate data and « Message passing (MPI) on
functions to send from CPU CPUs and MICs alike
to MIC for execution Unified source code

* Unified source code « Code modifications optional

« Code modifications required — Assign different work to

« Compile once with offload CPUs vs. MICs
flags — Multithread with OpenMP for

— Single executable includes CPUs, MICs, or both
instructions for MIC and CPU Compile twice, 2 executables

* Run in parallel using MPI — One for MIC, one for host
and/or scripting, if desired * Run in parallel using MPI

5/17/2012 www.cac.cornell.edu 12

Cornell University

Center for Advanced Computing

Strategies for HPC Codes

[

U

X

No change —
run on CPUSs,
MICs, or both

)

5/17/2012

[MPI code]

A 4

4)

Expand existing
hybrids; or, add

OpenMP offload
- /

www.cac.cornell.edu

4)

Build on libraries
like Intel MKL,
PETSc, etc.

(U)

13

o7 Cornell University
@E) Center for Advanced Computing

Pros and Cons of MIC Programming Models

« Offload engine: accelerator for host

— Pros: distinct hardware gets distinct role; programmable via simple calls
to a library such as MKL, or via directives (we’ll go into depth on this)

— Cons: most work travels over PCle; difficult to retain data on card

« “‘Symmetric” #1. heterogeneous MPI cores
— Pros: MPI works for all cores (though 1 MIC core < 1 server core)

— Cons: memory is insufficient to give each core a uOS plus lots of data;
fails to take good advantage of shared memory; PCle is a bottleneck

« “Symmetric’ #2: heterogeneous SMPs (symmetric multiprocessors)

— Pros: MPI/OpenMP works for both host and MIC; efficient use of limited
PCle bandwidth and MIC memory due to single message source/sink

— Cons: hybrid programming is already tough on homogeneous SMPs;
not clear whether existing OpenMP-based hybrids scale to 50+ cores

5/17/2012 www.cac.cornell.edu 14

GD_) Cornell University

@

Center for Advanced Computing

Using Compiler Directives to Offload Work

 OpenMP’s directives provide a natural model
— 2010: OpenMP working group starts to consider accelerator extensions
— Related efforts are launched to target specific types of accelerators...
 LEO, Language Extensions for Offload
— Intel moves forward to support processors and co-processors, initially
« OpenACC
— PGI moves forward to support GPUSs, initially
* Will OpenMP 4.0 produce a compromise among all the above?

— Clearly desirable, but it’s difficult
— Other devices exist: network controllers, antenna A/D, cameras...
— Exactly what falls in the “accelerator” class? How diverse is it?

5/17/2012 www.cac.cornell.edu 15

so/v Cornell University
(&)

Center for Advanced Computing

OpenMP Offload Constructs: Base Program

#include <omp.h>
#define N 10000

void foo(double *, double *, double *, int); o Objective; offload foo to
int main(){ a device
int i; double a[N], b[N], c[N];
for(i=0;i<N;i++){ a[il=i; b[i]=N-1-i;} « Use OpenMP to do the
offload
foo(a,b,c,N);
}

void foo(double *a, double *b, double *c, int n){
int i;

for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }

5/17/2012 www.cac.cornell.edu 16

so/v Cornell University
(&)

Center for Advanced Computing

OpenMP Offload Constructs: Requirements

#include <omp.h>
#define N 10000
#pragma omp <offload_function_spec>

void foo(double *, double *, double *, int); « Direct compiler to offload
] t . -
int main(){ function or block

int i; double a[N], b[N], c[N];
for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;} “Decorate” function and
prototype
#pragma omp <offload_this> * Usual OpenMP
foo(a,b,c,N); directives work on
} device

#pragma omp <offload_function_spec>

void foo(double *a, double *b, double *c, int n){
int i;
#pragma omp parallel for
for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }

5/17/2012 www.cac.cornell.edu 17

o7 Cornell University
@E) Center for Advanced Computing

OpenMP Offload Constructs: Data Requirements

#include <omp.h>
#define N 10000
#pragma omp <offload_function_spec>

void foo(double *, double *, double *, int); « Data must be moved to

int main(){ .
int i; double a[N], b[N], c[N]; and from the device
for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;} * Synchronous model

(move data to device at

#pragma omp <offload_this> <data_clause> dlspatch of execution,
foo(a,b,c,N); move back afterward)

} « Control of data locality is

#pragma omp <offload_function_spec>
void foo(double *a, double *b, double *c, int n){ new to OpenMP (and

inti; OpenACC)
#pragma omp parallel for
for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }

5/17/2012 www.cac.cornell.edu 18

Cornell University

Center for Advanced Computing

OpenMP Offload Constructs: Asynchronicity

#include <omp.h>
#define N 10000
#pragma omp <offload_function_spec>

void foo(double *, double *, double *, int); « Offloaded “region” can
. t .
int main(){ be done asynchronously

int i; double a[N], b[N], c[N];
for(i=0;i<N;i++){ a[il=i; b[i]=N-1-i;} * Moving data
#pragma omp <offload_data> <async> asynchronously is

#pragma omp <offload_this> <async> <data> another Important option

foo(a,b,c,N);
}
#pragma omp <offload_function_spec>
void foo(double *a, double *b, double *c, int n){

int i;

#pragma omp parallel for

for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }

5/17/2012 www.cac.cornell.edu 19

o7 Cornell University
@E) Center for Advanced Computing

Two Types of MIC Parallelism (Both Are Needed)

 OpenMP (offloading to MIC)
— Work Level Parallelization (threads)
— Requires management of asynchronous “processes”
— It's all about sharing work and scheduling
* Vectorization
— “Lock step” Instruction Level Parallelization (SIMD)
— Requires management of synchronized instruction execution
— It's all about finding simultaneous operations

» To fully utiltize MIC, both types of parallelism should be identified
and exploited

5/17/2012 www.cac.cornell.edu 20

o7 Cornell University
@E) Center for Advanced Computing

Vectorization Matters Too

« Vectorization, or SIMD processing, enables simultaneous,
Independent operation on multiple data operands with a single
Instruction. (Large arrays should provide a constant stream of data.)

« Vector reawakening
— Pre-Sandy Bridge - DP* vector units are only 2 wide (SSE)
— Sandy Bridge — DP* vector units are 4 wide (AVX)
— MIC — DP* vector units are 8 wide! (VEX)

« Unvectorized loops lose 4x performance on Sandy Bridge and 8x
performance on MIC!

« Evaluate performance with vectorization compiler options turned on
and off (“-no-vec”) to assess overall vectorization.

*DP = double precision (8 bytes, 64 bits)
5/17/2012 www.cac.cornell.edu 21

Ejﬂ Cornell University

2J§ Center for Advanced Computing

Working with a Vectorizing Compiler

« Compilers are good at vectorizing inner loops, but they need help
— Make sure each iteration is independent
— Align data to match register sizes and cache line boundaries

« Compilers will look for vectorization opportunities starting at -O2

— To apply the latest relevant vector instructions for the given architecture:
-x<simd_instr_set>

— To examine assembly code, myprog.s: -S
— To confirm with a vector report: -vec-report=<n>, n="verboseness”

% ifort -xHOST -vec-report=4 prog.fo0 -c
prog.f90(31): (col. 11) remark:
loop was not vectorized: existence of vector dependence

5/17/2012 www.cac.cornell.edu 22

g5|® Cornell University
@E) Center for Advanced Computing

Dreams for Future Software Convergence

What would application programmers find most desirable?

« Stay with standard languages, language extensions, and compilers
— Move away from CUDA and special compilers

* Operate at a high level
— Avoid “intrinsics” that resemble assembly language

« EXpress programs in terms of generic parallel tasks
— De-emphasize APIs based on specific realizations, like threads

Maybe we're getting close...
« Compilers support vectorization and OpenMP (CL? ACC?)

* There’s plenty of room for improvement in the emerging standards

5/17/2012 www.cac.cornell.edu 23

g5|® Cornell University
@E) Center for Advanced Computing

What Does All This Mean for Me?

* Next-generation algorithms and programs will need to run well on
architectures like those just described
— Power efficiency will inevitably drive hardware designs in this direction
— Mobile processors are just as power-constrained as HPC behemoths;
the design goals align
— It seems likely that even workstations and laptops will soon come
equipped with many-core coprocessors of some type
« Therefore, finding and expressing parallelism in your computational
workload will become increasingly important
— Codes must be flexible enough to deal with heterogeneous resources
— Asynchronous, adaptable methods may eventually be favored

5/17/2012 www.cac.cornell.edu 24

e Cornell University

7 Center for Advanced Computing

Reference

* Much of the information in this talk was gathered from presentations
at the TACC-Intel Highly Parallel Computing Symposium, Austin,
Texas, April 10-11, 2012: http://www.tacc.utexas.edu/ti-hpcs1?2.

5/17/2012 www.cac.cornell.edu 25

http://www.tacc.utexas.edu/ti-hpcs12
http://www.tacc.utexas.edu/ti-hpcs12
http://www.tacc.utexas.edu/ti-hpcs12

