9eare Cornell University

7 Center for Advanced Computing

Preparing for
Highly Parallel, Heterogeneous
Coprocessing

Steve Lantz
Senior Research Associate
Cornell CAC

Workshop: Parallel Computing on Ranger and Lonestar
May 17, 2012



GD_) Cornell University

@

Center for Advanced Computing

What Are We Talking About Here?

« Hardware trend since around 2004: processors gain more cores
(execution engines) rather than greater clock speed

— IBM POWER4 (2001) became the first chip with 2 cores, 1.1-1.9 GHz;
meanwhile, Intel’s single-core Pentium 4 was a bust at >3.8 GHz

— Top server and workstation chips in 2012 (Intel Xeon, AMD Opteron)
now have 4, 8, even 16 cores, running at 1.6—-3.2 GHz

* Does it mean Moore’s Law is dead? No!
— Transistor densities are still doubling every 2 years
— Clock rates have stalled at < 4 GHz due to power consumption
— Only way to increase flop/s/watt is through greater on-die parallelism...
« |If 1 chip holds 10s of the best cores, why not 100s of weaker ones?
— Around 2007-8, “Cell” chips had 1 main and 8 synergistic processors;
but then something else came along...
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Highly Parallel Hardware Is in PCs Already

* High-end graphics processing units (GPUs) contain 100s of thread
processors and RAM enough to rival CPUs in compute capability

 GPUs are being further tailored for HPC
« Lonestar example: NVIDIA Tesla M2070

— 448 CUDA cores @ 1.15 GHz

— 6GB dedicated memory

— 1.03 Tflop/s peak SP rate

— 238W power consumption :
 Initially there were hardware obstacles to using GPUs for general

calculations, but these have been overcome
— ECC memory, double precision, IEEE-compliant arithmetic are built in
— What about software...?

5/17/2012 www.cac.cornell.edu



o7 Cornell University
@E) Center for Advanced Computing

General Purpose Computing on GPUs (GPGPU)

« Given the right software tools, developers can write code allowing
the GPU to perform calculations usually handled by the CPU

— Stream processing: GPU executes a code “kernel” on a stream of inputs

— Exploits the GPU’s rendering pipeline, designed to transform and shade
a stream of vertices: highly parallel, very energy efficient

— Works well if kernel is multithreaded, vectorized (SIMD), pipelined
* NVIDIA CUDA (2006) is the forerunner in this area

— SDK + API that permits programmers to use the C language to code
algorithms for execution on NVIDIA GPUs (must be compiled with nvcc)

« OpenCL (2008) is a more recent, open standard originated by Apple

— C99-based language + API that enables data-parallel computation on
GPUs as well as CPUs

— Actively supported on Intel, AMD, NVIDIA, ARM platforms
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Not All Applications Are Suitable for GPGPU

 Workload must be compute intensive, i.e., any data item fetched
from main memory must take part in several GPU operations

— Reason: to reach the GPU, data travel over a “slow” PCle interconnect
» Workload must be decomposed into many small, independent units

— Reason: GPU is only effective when all thread processors are kept busy
* Nontrivial (re)coding may be needed, based on a specialized API

— Good performance depends on very specific tuning to the hardware
(cache sizes, etc.)

— Resulting code is far less portable due to the API and special tuning
— May be avoided if a suitable kernel or library already exists

» Is there a better way for numerically-intensive applications to take
advantage of hardware trends?
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The Intel Approach: MIC

 MIC = Many Integrated Cores = a “coprocessor” on a PCle card that
features >50 compute cores
— Represents Intel’s response to GPGPU, especially NVIDIA's CUDA
— Incorporates lessons learned from the former “Larrabee” development

effort (which never became a product)
— Answers the question: if 8 modern Xeon cores fit on a die, how many

Pentium IlI's would fit?
« Addresses the API problem: standard x86 instructions are supported

— Includes 64-bit addressing
— Other recent x86 extensions may not be available
— Special instructions are added for an extra-wide (512-bit) vector register

 MIC executables are built using familiar Intel compilers, libraries,
and analysis tools
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MIC = A Teraflop/s System on a Chip!

« 1996: ASCI Red, first system « 2011: Knights Corner, first
to achieve 1 Tflop/s sustained Tflop/s system on a chip
e 72 cabinets « 1 PCle slot
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The Knights Ferry (KNF) Coprocessor

« KNF is the early development platform for the Intel MIC architecture
— Chip + memory on a PCI Express card
— Up to 8MB coherent shared L2 cache
— Up to 32 cores, 4 threads/core, < 1.2 GHz
— SIMD vector unit (8-DP floats wide)
— In-order instruction pipeline

* Linux Micro OS (nOS) runs on MIC
— Small OS memory footprint
— Basic functionality (I/O, standards Unix commands, etc.)
— Users can telnet to MIC

« RHEL 6.0, 6.1, 6.2 or SUSE 11 SP1 runs on host

» Details for Knights Corner (KNC) have yet not been disclosed
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Typical Configuration of a Future Stampede Node

 Host with dual Intel Xeon « PCle card with Intel

“Sandy Bridge” Access from network: “Knights Corner”
ssh 192.168.0.1 (OS)
ssh 192.168.0.2
/ (1OS) / \
Linux OS Linux
micro OS

Virtual 1P*
service for MIC

* can’t do this with a Lonestar GPU node, e.g., which is otherwise similar
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First Large-Scale MIC System: TACC Stampede

System specs from news release

* 10PF+ peak performance in initial system (1Q 2013)
— 2PF conventional cluster (Sandy Bridge)
— 8PF complementary coprocessors (KNC)

« 15PF+ after upgrade
« 14PB+ disk, 200TB+ RAM

e 56Gb/s FDR InfiniBand, fat-tree interconnect, ~75 miles of cables
— Compare Lonestar: 32Gb/s QDR (effective)

* Nearly 200 racks of compute hardware
* Integrated shared memory and remote visualization subsystems
« Total concurrency approaching 500,000 cores
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Construction Is Already Under Way at TACC

] Left: water chiller plant; right: addition to main facility
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Programming Models for Stampede

Offload Execution “Symmetric” Execution

« Directives indicate data and « Message passing (MPI) on
functions to send from CPU CPUs and MICs alike
to MIC for execution  Unified source code

* Unified source code « Code modifications optional

« Code modifications required — Assign different work to

« Compile once with offload CPUs vs. MICs
flags — Multithread with OpenMP for

— Single executable includes CPUs, MICs, or both
instructions for MIC and CPU Compile twice, 2 executables

* Run in parallel using MPI — One for MIC, one for host
and/or scripting, if desired * Run in parallel using MPI
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Strategies for HPC Codes
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Pros and Cons of MIC Programming Models

« Offload engine: accelerator for host

— Pros: distinct hardware gets distinct role; programmable via simple calls
to a library such as MKL, or via directives (we’ll go into depth on this)

— Cons: most work travels over PCle; difficult to retain data on card

« “‘Symmetric” #1. heterogeneous MPI cores
— Pros: MPI works for all cores (though 1 MIC core < 1 server core)

— Cons: memory is insufficient to give each core a uOS plus lots of data;
fails to take good advantage of shared memory; PCle is a bottleneck

« “Symmetric’ #2: heterogeneous SMPs (symmetric multiprocessors)

— Pros: MPI/OpenMP works for both host and MIC; efficient use of limited
PCle bandwidth and MIC memory due to single message source/sink

— Cons: hybrid programming is already tough on homogeneous SMPs;
not clear whether existing OpenMP-based hybrids scale to 50+ cores
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Using Compiler Directives to Offload Work

 OpenMP’s directives provide a natural model
— 2010: OpenMP working group starts to consider accelerator extensions
— Related efforts are launched to target specific types of accelerators...
 LEO, Language Extensions for Offload
— Intel moves forward to support processors and co-processors, initially
« OpenACC
— PGI moves forward to support GPUSs, initially
*  Will OpenMP 4.0 produce a compromise among all the above?

— Clearly desirable, but it’s difficult
— Other devices exist: network controllers, antenna A/D, cameras...
— Exactly what falls in the “accelerator” class? How diverse is it?
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OpenMP Offload Constructs: Base Program

#include <omp.h>
#define N 10000

void foo(double *, double *, double *, int ); o Objective; offload foo to
int main(){ a device
int i; double a[N], b[N], c[N];
for(i=0;i<N;i++){ a[il=i; b[i]=N-1-i;} « Use OpenMP to do the
offload
foo(a,b,c,N);
}

void foo(double *a, double *b, double *c, int n){
int i;

for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }
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OpenMP Offload Constructs: Requirements

#include <omp.h>
#define N 10000
#pragma omp <offload_function_spec>

void foo(double *, double *, double *, int ); « Direct compiler to offload
] t . -
int main(){ function or block

int i; double a[N], b[N], c[N];
for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;}  “Decorate” function and
prototype
#pragma omp <offload_this> * Usual OpenMP
foo(a,b,c,N); directives work on
} device

#pragma omp <offload_function_spec>

void foo(double *a, double *b, double *c, int n){
int i;
#pragma omp parallel for
for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }
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OpenMP Offload Constructs: Data Requirements

#include <omp.h>
#define N 10000
#pragma omp <offload_function_spec>

void foo(double *, double *, double *, int ); « Data must be moved to

int main(){ .
int i; double a[N], b[N], c[N]; and from the device
for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;} * Synchronous model

(move data to device at

#pragma omp <offload_this> <data_clause> dlspatch of execution,
foo(a,b,c,N); move back afterward)

} « Control of data locality is

#pragma omp <offload_function_spec>
void foo(double *a, double *b, double *c, int n){ new to OpenMP (and

inti; OpenACC)
#pragma omp parallel for
for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }
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OpenMP Offload Constructs: Asynchronicity

#include <omp.h>
#define N 10000
#pragma omp <offload_function_spec>

void foo(double *, double *, double *, int ); « Offloaded “region” can
. t .
int main(){ be done asynchronously

int i; double a[N], b[N], c[N];
for(i=0;i<N;i++){ a[il=i; b[i]=N-1-i;} * Moving data
#pragma omp <offload_data> <async> asynchronously is

#pragma omp <offload_this> <async> <data> another Important option

foo(a,b,c,N);
}
#pragma omp <offload_function_spec>
void foo(double *a, double *b, double *c, int n){

int i;

#pragma omp parallel for

for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }
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Two Types of MIC Parallelism (Both Are Needed)

 OpenMP (offloading to MIC)
— Work Level Parallelization (threads)
— Requires management of asynchronous “processes”
— It's all about sharing work and scheduling
* Vectorization
— “Lock step” Instruction Level Parallelization (SIMD)
— Requires management of synchronized instruction execution
— It's all about finding simultaneous operations

» To fully utiltize MIC, both types of parallelism should be identified
and exploited
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Vectorization Matters Too

« Vectorization, or SIMD processing, enables simultaneous,
Independent operation on multiple data operands with a single
Instruction. (Large arrays should provide a constant stream of data.)

« Vector reawakening
— Pre-Sandy Bridge - DP* vector units are only 2 wide (SSE)
— Sandy Bridge — DP* vector units are 4 wide (AVX)
— MIC — DP* vector units are 8 wide! (VEX)

« Unvectorized loops lose 4x performance on Sandy Bridge and 8x
performance on MIC!

« Evaluate performance with vectorization compiler options turned on
and off (“-no-vec”) to assess overall vectorization.

*DP = double precision (8 bytes, 64 bits)
5/17/2012 www.cac.cornell.edu 21
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Working with a Vectorizing Compiler

« Compilers are good at vectorizing inner loops, but they need help
— Make sure each iteration is independent
— Align data to match register sizes and cache line boundaries

« Compilers will look for vectorization opportunities starting at -O2

— To apply the latest relevant vector instructions for the given architecture:
-x<simd_instr_set>

— To examine assembly code, myprog.s: -S
— To confirm with a vector report: -vec-report=<n>, n="verboseness”

% ifort -xHOST -vec-report=4 prog.fo0 -c
prog.f90(31): (col. 11) remark:
loop was not vectorized: existence of vector dependence
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Dreams for Future Software Convergence

What would application programmers find most desirable?

« Stay with standard languages, language extensions, and compilers
— Move away from CUDA and special compilers

* Operate at a high level
— Avoid “intrinsics” that resemble assembly language

« EXpress programs in terms of generic parallel tasks
— De-emphasize APIs based on specific realizations, like threads

Maybe we're getting close...
« Compilers support vectorization and OpenMP (CL? ACC?)

* There’s plenty of room for improvement in the emerging standards
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What Does All This Mean for Me?

* Next-generation algorithms and programs will need to run well on
architectures like those just described
— Power efficiency will inevitably drive hardware designs in this direction
— Mobile processors are just as power-constrained as HPC behemoths;
the design goals align
— It seems likely that even workstations and laptops will soon come
equipped with many-core coprocessors of some type
« Therefore, finding and expressing parallelism in your computational
workload will become increasingly important
— Codes must be flexible enough to deal with heterogeneous resources
— Asynchronous, adaptable methods may eventually be favored
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Reference

* Much of the information in this talk was gathered from presentations
at the TACC-Intel Highly Parallel Computing Symposium, Austin,
Texas, April 10-11, 2012: http://www.tacc.utexas.edu/ti-hpcs1?2.
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