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Introduction 

Debugging 

• Find defects, analyze failures, verify 
expected program flow. 

• Debugger tools: Inspect or modify 
state of running program, port-
mortem analysis of memory dumps. 

• Harder in parallel! 

 

Profiling 

• Measure performance 
characteristics, Identify areas for 
improvement. 

• Profiler tools: collect performance 
measurements of a running 
program, analyze afterward. 

• Harder in parallel! 
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Background: Compiling/Linking 
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.c 

compile 

.o 

exe 

link 

.so 

Create machine instructions, static data, 
symbols (function/variable names) 

Resolve symbols 
from external libs. 

.a 

static dynamic 
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Background: Executable Files 

May 16-17, 2012 www.cac.cornell.edu 

Instructions
  

Data  

“other stuff” 

Machine instructions, memory addresses 

Global and static variable data 

Symbol table, linked library filenames, 
compiler version, other metadata. 
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Background: Execution & Memory  
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code 

data 

other 

instructions data 

stack 

heap 

instructions data 

data instructions 

Executable file 

Memory 

Grows/shrinks as program 
runs 

Loaded from dynamic 
libraries at start or 
runtime 

Loaded once at startup 
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Background: Execution & Memory  
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code 

data 

other 

instructions data 

stack 

heap 

instructions data 

data instructions 

Executable file 

Memory 

Instruction and static 
data allocated at load time 
 
Static data initialized to a 
certain value in the code 
copied from data segment 
 
Uninitialized static data  
allocated and initialized to 
Zero 
 
Includes instructions and data 
from statically-linked libraries 
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Background: Execution & Memory  
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code 

data 

other 

instructions data 

stack 

heap 

instructions data 

data instructions 

Executable file 

Memory 

Stack composed of 
frames created/destroyed 
each time a function is 
called/exited 
 
Each frame contains: 
• All automatic local variables 
• All arguments passed in 
• Address of caller’s frame 

 
Frames are added/removed 
from end of stack only 
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Background: Execution & Memory  
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code 

data 

other 

instructions data 

stack 

heap 

instructions data 

data instructions 

Executable file 

Memory 

Heap contains dynamic 
memory created by 
malloc/free (or new/delete,  
allocate/deallocate) 
 
Memory allocated where 
available 
 
Allocation times can vary 
depending on algorithm 
to locate a suitably sized 
block of free space  
(fragmentation) 
 
Watch for memory leaks! 
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Background: Execution & Memory  
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code 

data 

other 

instructions data 

stack 

heap 

instructions data 

data instructions 

Executable file 

Memory 

“Other” segments in executable 
file contain names of dynamic 
libraries. 
 
OS loads these libraries into  
Memory upon startup 
 
Possible to load on demand 
(e.g. via dlopen/dlsym)  
 
Won’t run unless all 
referenced libraries are  
present! (undefined symbol) 
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Background: OS and Hardware 

• OS can provide API for inspecting and controlling process execution 

• Wrap a program at startup or attach to running process 

• Example: Linux ptrace() 

– Pause execution 

– Modify in-memory instructions 

– Inspect or modify data memory or registers 

– Catch signals and traps 

• CPU can provide hardware counters 

– Cache hits/misses, TLB hits/misses, FLOPs, etc 

May 16-17, 2012 www.cac.cornell.edu 10 



Background: Profilers and Debuggers in control  
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code 

data 

other 

instructions data 

stack 

heap 

instructions data 

data instructions 

Executable file 

Memory 

 
 
Profiler or Debugger 

Read symbols, metadata 

Load alternate  
libraries 

Read or write data, instructions 
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Debugging 

• Inspect program state, compare to one’s own assumptions and expectations 

– Step through code line by line 

– Inspect variables/memory at specific points 

– Inspect memory and call stack after a crash 

• For MPI, OpenMP ‘state’ gets more complex 

– Many remote processes with own memory 

– Message status and timing 

– Step through individual processes or thread independent of rest (while others may 
still be running!) 
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Debugging: printf and logging  
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Debugging: printf and logging 

• Easy and intuitive 

– Target specific sections of code, under specific conditions 

– Simply analyze log(s) after execution, even for parallel or multithreaded jobs 

– Great for rare/transient or timing related bugs 

• Invasive and messy 

– Need to re-compile when logging statement added/removed 

–  Can slow down execution 

– Easy to forget statements are there 

– Can be hard to correlate output with statements. 

– Jumbled output with threads printing simultaneously 
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Debugging: printf and logging 

• Logging frameworks an improvement over printf (e.g. Log4c) 

– Filter by log levels (WARN, INFO, DEBUG) 

– Timestamps, formatting, runtime configuration changes 

– Control over where/how log is written (console, large file, rolling file, remote 
server, database, etc) 
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Debugging: printf and logging 
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Debugging: symbolic debugging 

• Inspect process memory, correlate instructions & memory addresses with 
symbols from source code. 

• Compiler option (-g for gcc, intel) tells compiler to store debugging symbols 
in the executable file 
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code 

data 

other 

Human-readable symbols and correlation data stored in  
one of the “other” segments in an executable file. 
• Not loaded into memory (no runtime overhead) 

• Some compilers MAY disable some optimizations 
• Available for inspection by debugging tool 
• Provides a very useful “map” for inspecting core dumps 
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Debugging: symbolic debugging: serial, threaded 
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code 

data 

other 

instructions data 

stack 

heap Executable file 

Memory 

Read symbols, metadata 

Read function call sequence and  
local variables from stack 

Determine location, step through 
lines of code by manipulating 
instructions 

Read program data from heap 

 
 
Debugger (e.g. GDB) 
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Debugging: symbolic debugging: serial, threaded 

• GDB (Gnu, almost ubiquitous), IDB (Intel) 

– Launch a program, analyze a dump, or attach to running process 

– Set conditional breakpoints, start/stop execution at will 

– Inspect and modify variables  
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Analyze a dump:  gdb <executable> core.1234 
(check ulimit setting for max core file size!) 

Attach to process:  gdb <executable> 1234 

Launch a process:  gdb <executable> 
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Debugging: symbolic debugging: GDB 

• run – execute the program from beginning. 

• backtrace – produce the backtrace from the last fault 

• break <line number> or break <function-name> - break at the line number or 
at the use of the function 

• step – step to next line of code (step into function if possible) 

• next – step to next line of code (do not step into function) 

• print <variable name> - print the value stored by the variable 

• continue – run until next break point 
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Debugging: symbolic debugging 
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Source code 
and execution  

Variables 

Stack view 

Evaluation, 
expressions 
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Debugging: symbolic debugging: Optimized code 

• Aggressive optimizations (e.g. –O3) cause machine instructions to diverge 
from machine code! 

– Loop unrolling, function inlining, instruction re-ordering, optimizing out variables, 
etc 

• Effects: debugger much less predictable 

– Setting some breakpoints are impossible (instructions optimized out or moved) 

– Variables are optimized out, or appear to change unexpectedly 

– Stepping through code follows arbitrary execution order 

• Easiest to debug with NO optimizations (-O0) 
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Debugging: symbolic debugging: Distributed 
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code 

data 

other 

instructions data 

stack 

heap 

instructions data 

data instructions 

Executable file 

Memory 

 
 
Distributed Debugger 

Read symbols, metadata 

Load alternate  
libraries 

Read or write data, instructions 
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Debugging: symbolic debugging: Distributed 
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Debugging: symbolic debugging: distributed: DDT 

• DDT (Allinea Distributed Debugger Tool) 

• Proprietary, GUI-oriented 

• Large-scale OpenMP, MPI debugging 

– MPI message tracking 

– View queues and communication patterns for running procs 

– Supports all MPI distributions on Ranger 

• Jobs submitted through DDT 

– Remember, it needs to “wrap” and control each task 

• Usage:  Compile with –g, then module load ddt,  then ddt 
<executable> and go from there. 
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Debugging: symbolic debugging: distributed: DDT 
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Add any arguments 

Ranger default 

Sets number 
of nodes 

Click when ready 
to submit job 
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Debugging: symbolic debugging: distributed: DDT 
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Debugging: symbolic debugging: distributed: DDT 
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Source code 
and execution  

Variables 

Evaluation, 
expressions Stack view and 

stdout 

Processes and 
groups 
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Debugging: symbolic debugging: distributed: DDT 
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Profiling  

• Measure performance characteristics, identify compute-intensive areas (e.g. 
“hot spots”) that may be worth improving 

• Can suffer from “observer effect” – collecting performance data significantly 
degrades performance 

• Two main approaches: instrumentation and statistical sampling 

– Instrumentation: add instructions to collect information (function call duration, 
number of invocations, etc) 

– Sampling: Query state of unmodified executable at regular intervals 
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Profiling: Instrumentation 
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.c 

compile 

.o 

exe 

link 

.so 
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Profiling: Instrumentation: printf and timers 

• Check system time and printf at appropriate points 

– SYSTEM_CLOCK  or clock() for fortran, C 

• Very simple, great for targeting a specific area. 

• Problem:  printf statements are expensive, especially if there are many 

• Problem:  Timer precision and accuracy is system/implementation 
dependent.    
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Profiling: Instrumentation: GPROF 

• GPROF (GNU profiler) 

• Compile option –pg adds debugging symbols and additional data collection 
symbols 

– Slows program down, sometimes significantly 

• Each time program is run, output file gmon.out is created containing profiling 
data 

– This data is then analyzed by gprof in a separate step, e.g. gprof <executable> 
gmon.out > profile.txt 
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Profiling: Instrumentation: GPROF 

• Flat profile 

– Lists each function with associated statistics 

– CPU time spend, number of times called, etc 

– Useful to identify expensive routines 

• Call Graph 

– Number of times function was called by another, called others 

– Gives a sense of relationship between functions 

• Annotated Source 

– Number of times a line was executed 
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Profiling: sampling 
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code 

data 

other 

instructions data 

stack 

heap Executable file 

Memory 

 
 
Sampling profiler 

Read symbols, metadata 

Read execution state from memory 

Read hardware counters 
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Profiling: sampling: HPCToolkit, PAPI 

• PAPI: Provides access to hardware counters 

– API hides gory details of hardware/OS platform 

– Cache accesses, hits, misses 

– FLOPS 

– The kinds of data available depend very much on hardware 

• HPCToolkit 

– Asynchronous sampling of running processes 

– Supports OpenMP, MPI, and hybrid 

– Supports running against optimized code 

– http://hpctoolkit.org 
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Profiling: sampling: HPCToolkit 
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From  Xu Liu, John Mellor-Crummey, and Nathan R. Tallen (2012),  
Analyzing Application Performance Bottlenecks on Intel’s SCC. 
Presented at TACC-Intel Highly Parallel Computing Symposium,  Austin, TX 



Profiling: sampling: PerfExpert 

• Developed at TACC 

• Easy to use interface over data collected via HPCToolkit and PAPI 

• Provides suggestions and “what to fix” 

• Runs against fully optimized code with debugging symbols 

• http://www.tacc.utexas.edu/perfexpert 
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Profiling: sampling: PerfExpert 
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Profiling: sampling: PerfExpert 
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Profiling: IPM 

• Integrated Performance Monitoring 

• Run against fully optimized code with debugging symbols (-g) 

• You need to explicitly pre-load ipm library: 

– module load ipm 

– export LD_PRELOAD=$TACC_IPM_LIB/libipm.so 

– export IPM_REPORT=full 

– ibrun <my executable> <my arguments> 

• Produces text, html, xml reports of processing and communication statistics 

• Very good for quick snapshot of MPI behaviour 

• http:/ipm-hpc.sourceforge.net/ 
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Profiling: IPM 
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Profiling: IPM 
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Profiling:IPM 
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Profiling:IPM 
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