
Debugging and Profiling

Aaron Birkland

Cornell Center for Advanced Computing

Special thanks to the Texas Advanced Computing Center for
some slide content.

Introduction

Debugging

• Find defects, analyze failures, verify
expected program flow.

• Debugger tools: Inspect or modify
state of running program, port-
mortem analysis of memory dumps.

• Harder in parallel!

Profiling

• Measure performance
characteristics, Identify areas for
improvement.

• Profiler tools: collect performance
measurements of a running
program, analyze afterward.

• Harder in parallel!

May 16-17, 2012 www.cac.cornell.edu 2

Background: Compiling/Linking

May 16-17, 2012 www.cac.cornell.edu

.c

compile

.o

exe

link

.so

Create machine instructions, static data,
symbols (function/variable names)

Resolve symbols
from external libs.

.a

static dynamic

3

Background: Executable Files

May 16-17, 2012 www.cac.cornell.edu

Instructions

Data

“other stuff”

Machine instructions, memory addresses

Global and static variable data

Symbol table, linked library filenames,
compiler version, other metadata.

4

Background: Execution & Memory

May 16-17, 2012 www.cac.cornell.edu

code

data

other

instructions data

stack

heap

instructions data

data instructions

Executable file

Memory

Grows/shrinks as program
runs

Loaded from dynamic
libraries at start or
runtime

Loaded once at startup

5

Background: Execution & Memory

May 16-17, 2012 www.cac.cornell.edu

code

data

other

instructions data

stack

heap

instructions data

data instructions

Executable file

Memory

Instruction and static
data allocated at load time

Static data initialized to a
certain value in the code
copied from data segment

Uninitialized static data
allocated and initialized to
Zero

Includes instructions and data
from statically-linked libraries

6

Background: Execution & Memory

May 16-17, 2012 www.cac.cornell.edu

code

data

other

instructions data

stack

heap

instructions data

data instructions

Executable file

Memory

Stack composed of
frames created/destroyed
each time a function is
called/exited

Each frame contains:
• All automatic local variables
• All arguments passed in
• Address of caller’s frame

Frames are added/removed
from end of stack only

7

Background: Execution & Memory

May 16-17, 2012 www.cac.cornell.edu

code

data

other

instructions data

stack

heap

instructions data

data instructions

Executable file

Memory

Heap contains dynamic
memory created by
malloc/free (or new/delete,
allocate/deallocate)

Memory allocated where
available

Allocation times can vary
depending on algorithm
to locate a suitably sized
block of free space
(fragmentation)

Watch for memory leaks!

8

Background: Execution & Memory

May 16-17, 2012 www.cac.cornell.edu

code

data

other

instructions data

stack

heap

instructions data

data instructions

Executable file

Memory

“Other” segments in executable
file contain names of dynamic
libraries.

OS loads these libraries into
Memory upon startup

Possible to load on demand
(e.g. via dlopen/dlsym)

Won’t run unless all
referenced libraries are
present! (undefined symbol)

9

Background: OS and Hardware

• OS can provide API for inspecting and controlling process execution

• Wrap a program at startup or attach to running process

• Example: Linux ptrace()

– Pause execution

– Modify in-memory instructions

– Inspect or modify data memory or registers

– Catch signals and traps

• CPU can provide hardware counters

– Cache hits/misses, TLB hits/misses, FLOPs, etc

May 16-17, 2012 www.cac.cornell.edu 10

Background: Profilers and Debuggers in control

May 16-17, 2012 www.cac.cornell.edu

code

data

other

instructions data

stack

heap

instructions data

data instructions

Executable file

Memory

Profiler or Debugger

Read symbols, metadata

Load alternate
libraries

Read or write data, instructions

11

Debugging

• Inspect program state, compare to one’s own assumptions and expectations

– Step through code line by line

– Inspect variables/memory at specific points

– Inspect memory and call stack after a crash

• For MPI, OpenMP ‘state’ gets more complex

– Many remote processes with own memory

– Message status and timing

– Step through individual processes or thread independent of rest (while others may
still be running!)

May 16-17, 2012 www.cac.cornell.edu 12

Debugging: printf and logging

May 16-17, 2012 www.cac.cornell.edu 13

Debugging: printf and logging

• Easy and intuitive

– Target specific sections of code, under specific conditions

– Simply analyze log(s) after execution, even for parallel or multithreaded jobs

– Great for rare/transient or timing related bugs

• Invasive and messy

– Need to re-compile when logging statement added/removed

– Can slow down execution

– Easy to forget statements are there

– Can be hard to correlate output with statements.

– Jumbled output with threads printing simultaneously

May 16-17, 2012 www.cac.cornell.edu 14

Debugging: printf and logging

• Logging frameworks an improvement over printf (e.g. Log4c)

– Filter by log levels (WARN, INFO, DEBUG)

– Timestamps, formatting, runtime configuration changes

– Control over where/how log is written (console, large file, rolling file, remote
server, database, etc)

May 16-17, 2012 www.cac.cornell.edu 15

Debugging: printf and logging

May 16-17, 2012 www.cac.cornell.edu 16

Debugging: symbolic debugging

• Inspect process memory, correlate instructions & memory addresses with
symbols from source code.

• Compiler option (-g for gcc, intel) tells compiler to store debugging symbols
in the executable file

May 16-17, 2012 www.cac.cornell.edu

code

data

other

Human-readable symbols and correlation data stored in
one of the “other” segments in an executable file.
• Not loaded into memory (no runtime overhead)

• Some compilers MAY disable some optimizations
• Available for inspection by debugging tool
• Provides a very useful “map” for inspecting core dumps

17

Debugging: symbolic debugging: serial, threaded

May 16-17, 2012 www.cac.cornell.edu

code

data

other

instructions data

stack

heap Executable file

Memory

Read symbols, metadata

Read function call sequence and
local variables from stack

Determine location, step through
lines of code by manipulating
instructions

Read program data from heap

Debugger (e.g. GDB)

18

Debugging: symbolic debugging: serial, threaded

• GDB (Gnu, almost ubiquitous), IDB (Intel)

– Launch a program, analyze a dump, or attach to running process

– Set conditional breakpoints, start/stop execution at will

– Inspect and modify variables

May 16-17, 2012 www.cac.cornell.edu

Analyze a dump: gdb <executable> core.1234
(check ulimit setting for max core file size!)

Attach to process: gdb <executable> 1234

Launch a process: gdb <executable>

19

Debugging: symbolic debugging: GDB

• run – execute the program from beginning.

• backtrace – produce the backtrace from the last fault

• break <line number> or break <function-name> - break at the line number or
at the use of the function

• step – step to next line of code (step into function if possible)

• next – step to next line of code (do not step into function)

• print <variable name> - print the value stored by the variable

• continue – run until next break point

May 16-17, 2012 www.cac.cornell.edu 20

Debugging: symbolic debugging

May 16-17, 2012 www.cac.cornell.edu

Source code
and execution

Variables

Stack view

Evaluation,
expressions

21

Debugging: symbolic debugging: Optimized code

• Aggressive optimizations (e.g. –O3) cause machine instructions to diverge
from machine code!

– Loop unrolling, function inlining, instruction re-ordering, optimizing out variables,
etc

• Effects: debugger much less predictable

– Setting some breakpoints are impossible (instructions optimized out or moved)

– Variables are optimized out, or appear to change unexpectedly

– Stepping through code follows arbitrary execution order

• Easiest to debug with NO optimizations (-O0)

May 16-17, 2012 www.cac.cornell.edu 22

Debugging: symbolic debugging: Distributed

May 16-17, 2012 www.cac.cornell.edu

code

data

other

instructions data

stack

heap

instructions data

data instructions

Executable file

Memory

Distributed Debugger

Read symbols, metadata

Load alternate
libraries

Read or write data, instructions

23

Debugging: symbolic debugging: Distributed

May 16-17, 2012 www.cac.cornell.edu

24

Debugging: symbolic debugging: distributed: DDT

• DDT (Allinea Distributed Debugger Tool)

• Proprietary, GUI-oriented

• Large-scale OpenMP, MPI debugging

– MPI message tracking

– View queues and communication patterns for running procs

– Supports all MPI distributions on Ranger

• Jobs submitted through DDT

– Remember, it needs to “wrap” and control each task

• Usage: Compile with –g, then module load ddt, then ddt
<executable> and go from there.

May 16-17, 2012 www.cac.cornell.edu 25

Debugging: symbolic debugging: distributed: DDT

May 16-17, 2012 www.cac.cornell.edu

Add any arguments

Ranger default

Sets number
of nodes

Click when ready
to submit job

26

Debugging: symbolic debugging: distributed: DDT

May 16-17, 2012 www.cac.cornell.edu 27

Debugging: symbolic debugging: distributed: DDT

May 16-17, 2012 www.cac.cornell.edu

Source code
and execution

Variables

Evaluation,
expressions Stack view and

stdout

Processes and
groups

28

Debugging: symbolic debugging: distributed: DDT

May 16-17, 2012 www.cac.cornell.edu 29

Profiling

• Measure performance characteristics, identify compute-intensive areas (e.g.
“hot spots”) that may be worth improving

• Can suffer from “observer effect” – collecting performance data significantly
degrades performance

• Two main approaches: instrumentation and statistical sampling

– Instrumentation: add instructions to collect information (function call duration,
number of invocations, etc)

– Sampling: Query state of unmodified executable at regular intervals

May 16-17, 2012 www.cac.cornell.edu 30

Profiling: Instrumentation

May 16-17, 2012 www.cac.cornell.edu

.c

compile

.o

exe

link

.so

31

Profiling: Instrumentation: printf and timers

• Check system time and printf at appropriate points

– SYSTEM_CLOCK or clock() for fortran, C

• Very simple, great for targeting a specific area.

• Problem: printf statements are expensive, especially if there are many

• Problem: Timer precision and accuracy is system/implementation
dependent.

May 16-17, 2012 www.cac.cornell.edu 32

Profiling: Instrumentation: GPROF

• GPROF (GNU profiler)

• Compile option –pg adds debugging symbols and additional data collection
symbols

– Slows program down, sometimes significantly

• Each time program is run, output file gmon.out is created containing profiling
data

– This data is then analyzed by gprof in a separate step, e.g. gprof <executable>
gmon.out > profile.txt

May 16-17, 2012 www.cac.cornell.edu 33

Profiling: Instrumentation: GPROF

• Flat profile

– Lists each function with associated statistics

– CPU time spend, number of times called, etc

– Useful to identify expensive routines

• Call Graph

– Number of times function was called by another, called others

– Gives a sense of relationship between functions

• Annotated Source

– Number of times a line was executed

May 16-17, 2012 www.cac.cornell.edu 34

Profiling: sampling

May 16-17, 2012 www.cac.cornell.edu

code

data

other

instructions data

stack

heap Executable file

Memory

Sampling profiler

Read symbols, metadata

Read execution state from memory

Read hardware counters

35

Profiling: sampling: HPCToolkit, PAPI

• PAPI: Provides access to hardware counters

– API hides gory details of hardware/OS platform

– Cache accesses, hits, misses

– FLOPS

– The kinds of data available depend very much on hardware

• HPCToolkit

– Asynchronous sampling of running processes

– Supports OpenMP, MPI, and hybrid

– Supports running against optimized code

– http://hpctoolkit.org

May 16-17, 2012 www.cac.cornell.edu 36

http://hpctoolkit.org/

Profiling: sampling: HPCToolkit

May 16-17, 2012 www.cac.cornell.edu 37

From Xu Liu, John Mellor-Crummey, and Nathan R. Tallen (2012),
Analyzing Application Performance Bottlenecks on Intel’s SCC.
Presented at TACC-Intel Highly Parallel Computing Symposium, Austin, TX

Profiling: sampling: PerfExpert

• Developed at TACC

• Easy to use interface over data collected via HPCToolkit and PAPI

• Provides suggestions and “what to fix”

• Runs against fully optimized code with debugging symbols

• http://www.tacc.utexas.edu/perfexpert

May 16-17, 2012 www.cac.cornell.edu 38

http://www.tacc.utexas.edu/perfexpert
http://www.tacc.utexas.edu/perfexpert

Profiling: sampling: PerfExpert

May 16-17, 2012 www.cac.cornell.edu 39

Profiling: sampling: PerfExpert

May 16-17, 2012 www.cac.cornell.edu 40

Profiling: IPM

• Integrated Performance Monitoring

• Run against fully optimized code with debugging symbols (-g)

• You need to explicitly pre-load ipm library:

– module load ipm

– export LD_PRELOAD=$TACC_IPM_LIB/libipm.so

– export IPM_REPORT=full

– ibrun <my executable> <my arguments>

• Produces text, html, xml reports of processing and communication statistics

• Very good for quick snapshot of MPI behaviour

• http:/ipm-hpc.sourceforge.net/

May 16-17, 2012 www.cac.cornell.edu 41

http://ipm-hpc.sourceforge.net/
http://ipm-hpc.sourceforge.net/
http://ipm-hpc.sourceforge.net/
http://ipm-hpc.sourceforge.net/
http://ipm-hpc.sourceforge.net/

Profiling: IPM

May 16-17, 2012 www.cac.cornell.edu 42

Profiling: IPM

May 16-17, 2012 www.cac.cornell.edu 43

Profiling:IPM

May 16-17, 2012 www.cac.cornell.edu 44

Profiling:IPM

May 16-17, 2012 www.cac.cornell.edu 45

