geare Cornell University

7 Center for Advanced Computing

Debugging and Profiling

Aaron Birkland
Cornell Center for Advanced Computing

Special thanks to the Texas Advanced Computing Center for
some slide content.

58y Cornell University
(&)

Center for Advanced Computing

Introduction

Debugging Profiling
« Find defects, analyze failures, verify « Measure performance
expected program flow. characteristics, Identify areas for
« Debugger tools: Inspect or modify Improvement.
state of running program, port- » Profiler tools: collect performance
mortem analysis of memory dumps. measurements of a running
e Harderin para”e“ program, analyze afterward.

« Harder in parallel!

May 16-17, 2012 www.cac.cornell.edu 2

59 Cornell University

Center for Advanced Computing

Background: Compiling/Linking

Resolve symbols
from external libs.

-

Create machine instructions, static data, A
symbols (function/variable names)

static dynamic

May 16-17, 2012 www.cac.cornell.edu 3

\ Cornell University

Center for Advanced Computing

Background: Executable Files

Machine instructions, memory addresses

Global and static variable data

Symbol table, linked library filenames,
compiler version, other metadata.

May 16-17, 2012 www.cac.cornell.edu 4

59 Cornell University

Center for Advanced Computing

Background: Execution & Memory

Memory

—>instructions | [data | Loaded once at startup
‘ Grows/shrinks as program
runs
Executable file lheap = =

instructions | idata_ Loaded from dynamic
libraries at start or
instructions | idata | runtime

May 16-17, 2012 www.cac.cornell.edu 5

Cornell University

Center for Advanced Computing

Background: Execution & Memory

Memory

_ - Instruction and static

data allocated at load time

. h e Static data initialized to a
Executable file €ap certain value in the code

A — copied from data segment
(instructions ~{data
IR e Uninitialized static data
_instructions | idata - allocated and initialized to
Zero
Includes instructions and data
from statically-linked libraries

May 16-17, 2012 www.cac.cornell.edu 6

Cornell University

Center for Advanced Computing

Background: Execution & Memory

Memory

> Instructions data

\

Stack composed of
‘ frames created/destroyed
each time a function is

called/exited

Executable file heap —

R Each frame contains:

 instructions . daia . All automatic local variables

I e . All arguments passed in

_instructions | idata - Address of caller’s frame
Frames are added/removed
from end of stack only

May 16-17, 2012 www.cac.cornell.edu 7

Cornell University

Center for Advanced Computing

Background: Execution & Memory

Memory
> Instructions data : :
Heap contains dynamic
stack . memory created by

malloc/free (or new/delete,
allocate/deallocate)

Executable file

N —— Memory allocated where
nstructions ldata | available
’; i__i_r_‘_'fz!fHQt_i_Q_rJ?z _____ | i_d_aet._a _______________________ - Allocation times can vary
depending on algorithm
to locate a suitably sized
block of free space
(fragmentation)

Watch for memory leaks!

May 16-17, 2012 www.cac.cornell.edu 8

59 Cornell University

Center for Advanced Computing

Background: Execution & Memory

Memory
> Instructions data :
“Other” segments in executable
file contain names of dynamic
—>
S libraries.
Executable file heap - OS loads these libraries into

Won’t run unless all
referenced libraries are
present! (undefined symbol)

einactons T [aaa]y pen siarp
Possible to load on demand
NSRS SR (e.o. via dopen/dlsym)

May 16-17, 2012 www.cac.cornell.edu 9

58y Cornell University
),

Center for Advanced Computing

Background: OS and Hardware

« OS can provide API for inspecting and controlling process execution
 Wrap a program at startup or attach to running process
« Example: Linux ptrace ()
— Pause execution
— Modify in-memory instructions
— Inspect or modify data memory or registers
— Catch signals and traps
« CPU can provide hardware counters
— Cache hits/misses, TLB hits/misses, FLOPSs, etc

May 16-17, 2012 www.cac.cornell.edu 10

59 Cornell University

Center for Advanced Computing

Background: Profilers and Debuggers in control

Memory

Read or write data, instructions

Load alternate
libraries

Executable file

F

Read symbols, metadata

May 16-17, 2012 www.cac.cornell.edu 11

Cornell University

Center for Advanced Computing

Debugging

* Inspect program state, compare to one’s own assumptions and expectations

— Step through code line by line
— Inspect variables/memory at specific points
— Inspect memory and call stack after a crash

« For MPI, OpenMP ‘state’ gets more complex
— Many remote processes with own memory

— Message status and timing
— Step through individual processes or thread independent of rest (while others may

still be running?!)

May 16-17, 2012 www.cac.cornell.edu 12

Cornell Umversltv

T H-'I'

Center for Advanced Computing

Debugging: printf and logging

int main (int argc, char™ argv) {

printf(“Starting main...”);
int iterations = 5;
int val = 0, val2=0;
printf(“Initialized val to %d and val2 to %d", val, val2);
while (iterations --) {
val = sometime();
print(*Sometime() returned %d\n”, val),
val2 = moretime();
printf(*moretime() returned %d\n”, val);

}

printf(“Exiting main, iterations ==%s\d", iterations);

May 16-17, 2012

www.cac.cornell.edu

13

58y Cornell University
(&)

Center for Advanced Computing

Debugging: printf and logging

« Easy and intuitive
— Target specific sections of code, under specific conditions
— Simply analyze log(s) after execution, even for parallel or multithreaded jobs
— Great for rare/transient or timing related bugs
* |nvasive and messy
— Need to re-compile when logging statement added/removed
— Can slow down execution
— Easy to forget statements are there
— Can be hard to correlate output with statements.
— Jumbled output with threads printing simultaneously

May 16-17, 2012 www.cac.cornell.edu 14

58y Cornell University
),

Center for Advanced Computing

Debugging: printf and logging

« Logging frameworks an improvement over printf (e.g. Log4c)
— Filter by log levels (WARN, INFO, DEBUG)
— Timestamps, formatting, runtime configuration changes

— Control over where/how log is written (console, large file, rolling file, remote
server, database, etc)

May 16-17, 2012 www.cac.cornell.edu 15

Cornell University

Center for Advanced Computing

Debugging: printf and logging

int main (int argc, char*™ argv) {

log4c_init();

mycat = log4c_category_get(“sillyapp.main”);

int iterations = 5;

logd4c_category_log(mycat, LOG4C_PRIORITY_DEBUG,"Debugging app 1
- loop %d", iterations);

int val = 0, val2=0;

log4c_category_log(mycat, LOG4C_PRIORITY_ERROR, “Some error”

printf(“Initialized val to %d and val2 to %d”, val, val2);

[Header]

2009-05-13 15:21:14,315[11] WARN Logger.Program Pretty sure I'm getting ready to die!
2009-05-13 15:21:14,331[11] ERROR Logger.Program uh-oh, no | wasn't!

2009-05-13 15:21:14,331 [11] FATAL Logger.Program blech. Out

[Footer]

May 16-17, 2012 www.cac.cornell.edu 16

59 Cornell University

Center for Advanced Computing

Debugging: symbolic debugging

* Inspect process memory, correlate instructions & memory addresses with
symbols from source code.

« Compiler option (-g for gcc, intel) tells compiler to store debugging symbols
In the executable file

Human-readable symbols and correlation data stored in
one of the “other” segments in an executable file.
Not loaded into memory (no runtime overhead)
Some compilers MAY disable some optimizations
Available for inspection by debugging tool
Provides a very useful “map” for inspecting core dumps

May 16-17, 2012 www.cac.cornell.edu 17

Cornell Umversltv

Center for Advanced Computing

Debugging: symbolic debugging: serial, threaded

Memory Determine location, step through
lines of code by manipulating
instructions

Read function call sequence and
local variables from stack

Executable file Read program data from heap

'3 BN 2R

Cost [C/C++ Application]

bost.c:8 Ox4 2f049

D) (T

D@ Bl
der (@ test_timing_boost.c ﬁﬁ __libc_start_main() (@ test_timing.c % =8

I}

eriodic and within tolerance */ {

Read symbols, metadata

DESIRED_INVOCATION_ COUNT =55
DESIRED_INTERVAL =

>sta t(u DESIRED_INTERVAL, _track_timer.
*) &

a1 J#nothing*/
42} while (ts.invocation_count < DESIRED_INVOCATION_COUNT);
42

May 16-17, 2012 www.cac.cornell.edu 18

Cornell University

Center for Advanced Computing

Debugging: symbolic debugging: serial, threaded
 GDB (Gnu, almost ubiquitous), IDB (Intel)
— Launch a program, analyze a dump, or attach to running process

— Set conditional breakpoints, start/stop execution at will
— Inspect and modify variables

Launch a process. gdb <executable>

Attach to process: gdb <executable> 1234

Analyze a dump: gdb <executable> core.1234
(check ulimit setting for max core file size!)

May 16-17, 2012 www.cac.cornell.edu 19

58y Cornell University
(&)

Center for Advanced Computing

Debugging: symbolic debugging: GDB

* run — execute the program from beginning.
« Dbacktrace — produce the backtrace from the last fault

* break <line number> or break <function-name> - break at the line number or
at the use of the function

« step — step to next line of code (step into function if possible)
* next — step to next line of code (do not step into function)

« print <variable name> - print the value stored by the variable
« continue — run until next break point

May 16-17, 2012 www.cac.cornell.edu 20

Cornell Umversltv

Center for Advanced Computing

Debugging: symbolic debugging

%5 Debug & = B || variables X ™ % Breakpomts} it Reglsters} =) ModuLes} =8
Ok IS S S i = 5 [E il o
< [l test_timing_boost [C/C++ Application] Name -
~ i /home/apb18/projects/ CAC/dif42_0001/sim_build/test/execution/test_tir| ~ % timer
< o Thread [1] 3572 [core: 0] (Suspended : Step) ~ deadline_timer
= test_period() at test_timing.c:37 0x44 2087 v @ boost::asio: basic_io_object<boost::asio:; deadline_timer_service<boo:
= run{) at test_timing.c:25 0x44 2056 P = service
= main() at test_timing_boost.c:8 0x42f049 P (2 implementation \/ 1 bl
i 'l ariables
b » mutex

Stack view > » thread g

] m I [>]
Name : deadline_timer -
Detalls:0x305f0ec9e0

fault: f 1
Defaul t:Oxa0sToececo Evaluation,

Hex: Ox305fDec9ecO

géEz{yoéé;}-ggggéii;ééloooﬁll 1101100100111000000 exp reSS i O n S

<

] smplserial.h (@ smplserial.cpp (@ timed_latency_sender test_timing_boost.c (__libc_start_main() (B test_timing.c & P =0

24void run(void) {

25 test_period();

26 test_absolute_tlme 0;
27}

28 —
20 /4 Verify that the timer peried is in fact periedic and within telerance */
Z0static void test_period(void)

volatile Timer_state ts; L
Timer *timer;

const Uin‘tlﬁ_‘t DESIRED _INVOCATION COUNT = 5;
const ulntlé_t DESIRED INTERVAL = 5;
ts.lnvecation_count = 0;

Source code
and execution

timer = timing_impl-=start(@, DESIRED_INTERVAL, _track_timer,
(Timer_state *) &ts);

do { _
/*nathing*/ _
} while (ts.invocation_count < DESIRED INVOCATION_COUNT);

al

May 16-17, 2012 www.cac.cornell.edu 21

Cornell University

Center for Advanced Computing

Debugging: symbolic debugging: Optimized code

« Aggressive optimizations (e.g. —03) cause machine instructions to diverge
from machine code!

— Loop unrolling, function inlining, instruction re-ordering, optimizing out variables,
etc

« Effects: debugger much less predictable
— Setting some breakpoints are impossible (instructions optimized out or moved)
— Variables are optimized out, or appear to change unexpectedly
— Stepping through code follows arbitrary execution order

« Easiest to debug with NO optimizations (-00)

May 16-17, 2012 www.cac.cornell.edu 22

59 Cornell University

Center for Advanced Computing

Debugging: symbolic debugging: Distributed
Memory

Read or write data, instructions

Load alternate
libraries

Executable file

F

Read symbols, metadata

May 16-17, 2012 www.cac.cornell.edu 23

Cornell University

Center for Advanced Computing

Debugging: symbolic debugging: Distributed

.\
-

May 16-17, 2012 www.cac.cornell.edu 24

/

58y Cornell University
(&)

Center for Advanced Computing

Debugging: symbolic debugging: distributed: DDT

« DDT (Allinea Distributed Debugger Tool)
* Proprietary, GUI-oriented

« Large-scale OpenMP, MPI debugging
— MPI message tracking
— View queues and communication patterns for running procs
— Supports all MPI distributions on Ranger
« Jobs submitted through DDT
— Remember, it needs to “wrap” and control each task

« Usage: Compile with —g, then module load ddt, then ddt
<executable> and go from there.

May 16-17, 2012 www.cac.cornell.edu 25

Cornell University

Center for Advanced Computing

Debugging: symbolic debugging: distributed: DDT

Allinea Distributed Debugging Tool v2.3.1

Session Confrol Search View Help

Ak R ¥A J 1117
Current Group;
Project MNavigator

Focus on current: @ Group O Process O Thread Step Threads Together

Local Variables
Project Files

Logals | Current Line(s) | Stack
Add any arguments [Fo00 Vaiabetare [vae |
+ £ Source Tree
- E4Header Files

+8 Source Files
2

DDT - Run (queue submission mode) E]
\ Application: /sharefhome/00940/4gB0187 1/ddt/ddt_app

: E
N
Arguments:

Run MWithout MPI Suppart

Ranger defau It :x Options: muapich 1 MPI, use gueue = Change..

Glueue Submission Parameters: Gueue=development, YWall Clock Limit=0:30:00, Project={undefined) = Change...
MWumber of proce 3z é} MNumber of threads [(OpentdP only): |1 §]

ced >

Currently Submit Cance|

Sets number
of nodes

s
S
=3

5
=1

Click when ready
to submit job

Process O

DoT

May 16-17, 2012 www.cac.cornell.edu 26

Cornell Umversltv

Center for Advanced Computing

Allinea Distributed Debugging Tool v2.3.1

Session Control Search Yiew Help

P AL AERILE

Current Group: Focus on current: @ Group 0 Process O Thread Step Threads Together

Project Navigator

Project Files

Local Variables

DT

Logals | Current Line(s) |l Stack
f@ Project Files Variable Mame |Value |
+-& 5Source Tree
= EHeader Files
<& Source Files
) DDT - Job Submitted [x]
Your debugging joh has been submitted to the gueue. DDT will continue automatically once the job has been started.
“ou may cancel the joh by closing COT or clicking on the button below.
ACTTVE JOES
JOEID JOBMAME USERNAME STATE CORE HOST QUELE REMAINING STARTTIME
0 active jobz @ 0 of 3888 hosts ((.00 %)
WAITING JOBS
JORID JOBMAME DSERNAME ST4TE CORE HOST QUELE WCLIMIT — QUEUETIME -
571833 DDTJOB £g301871 Waiting 32 2 development 00:30:00 Tue Mar 3 12:49:51 —
WATTING JOBS WITH JOB DEPENDENCIES——-
JOBID JOBMAME USERNAME STATE CORE HOST QUELE WCLIMIT — QUEOETIME
UNSCHEDULED JOB§————————————
JOBID JOBMAME USERNAME STATE CORE HOST QUELE WCLIMIT — QUEOETIME
0| | Total Jobs: 1 4ctive Jobs: O Waiting Jobs: 1 Dep/Unsched Jobs: ()
i Cancel Job
8 E
= :
LoT

May 16-17, 2012 www.cac.cornell.edu

27

e

Allinea Distributed Debugging Tool v;

ession Control Search Yiew Help
el B & 5 R EBIET EJBR

~ Focus on current: ® Group ' Process (. Thread Step Threads Together

[HEE 5|5|7|E|9|m|m|1z|13'14'15'15|17|1s|19'20'21|zz|za|z4|zs|ze|z7|za|29|an|aw_‘

Processes and -
groups

Curfent Group: Root

I N e e

debug_codef x

Project Files | Fartran hodules B . [«]| Locals | CurrentLine(s) | Stack
3 integer mpierr . X
@ Project Files 7 integer mpistat(mpi_status_size
EwSJ T 8 integer 1,tmppe,mype,n.npes Vartable Name |Va|ue ‘
OUrCe Tree 9 integer nmax i]
+-E Header Files 0 paraneter (NMAX=1048577)
1

1
+8 Source Files [
1

Source code
2
3 ¢ Imitialize MPI
14

call wpi_initimpierr)
15 call mpi_comn_rankimpi _comm_war]d, mype, mpierr)

.
16 call mpi_comr_size(mpi _comm_morld, npes, mpierrd and eXeCutIOn
17

18 ¢ Imt\ahza data

T Variables

MAX — 1 — mype

el if(mype .eq. U) thes
32 write(g,* 'anS ‘.npes,' mype:'.mype

else
34 write(s,*) * ' mype:’,mype
endif
TS
|7 I O] <]] ||Type: none selected

=] stdout | Stderr | Stdin ("Root” group) | Breakpoints | Watches | Stacks

E Expression | Value |

Currently Displaying: Al -

Evaluation,
expressions

Stack view and
stdout

DDT

May 16-17, 2012 www.cac.cornell.edu 28

g5)% Cornell University
()

Center for Advanced Computing

Debugging: symbolic debugging: distributed: DDT

aan % DDT - Message Queuss

Salect quewss 10 show
[+ |Send
n [+ Recaive

—

a Select communicator
MPI_COMM_®ORLD

PP S0t _ W ORLD_coll

e £ | - e MPI_COsib_SELF

e ELTS MPL_CO8M_SELF _Collec
== Linf&med--
'ﬂ 4] | el
: FReanks

_J Enow Iocal ranks
& Show glokal ranks

Updats |

| Show queisss In Balbla

May 16-17, 2012 www.cac.cornell.edu 29

Cornell University

Center for Advanced Computing

Profiling

« Measure performance characteristics, identify compute-intensive areas (e.g.
“hot spots”) that may be worth improving

« Can suffer from “observer effect” — collecting performance data significantly
degrades performance
« Two main approaches: instrumentation and statistical sampling

— Instrumentation: add instructions to collect information (function call duration,
number of invocations, etc)

— Sampling: Query state of unmodified executable at regular intervals

May 16-17, 2012 www.cac.cornell.edu 30

59 Cornell University

Center for Advanced Computing

Profiling: Instrumentation

-

May 16-17, 2012 www.cac.cornell.edu 31

Cornell University

Center for Advanced Computing

Profiling: Instrumentation: printf and timers

« Check system time and printf at appropriate points
— SYSTEM_CLOCK or clock() for fortran, C
* Very simple, great for targeting a specific area.
* Problem: printf statements are expensive, especially if there are many

* Problem: Timer precision and accuracy is system/implementation
dependent.

May 16-17, 2012 www.cac.cornell.edu 32

58y Cornell University

ad/§/ Center for Advanced Computing

Profiling: Instrumentation: GPROF

« GPROF (GNU profiler)
« Compile option —-pg adds debugging symbols and additional data collection
symbols
— Slows program down, sometimes significantly
« Each time program is run, output file gmon . out Is created containing profiling
data

— This data is then analyzed by gprof in a separate step, e.g. gprof <executable>
gmon.out > profile.txt

May 16-17, 2012 www.cac.cornell.edu 33

Cornell University

Center for Advanced Computing

Profiling: Instrumentation: GPROF

« Flat profile
— Lists each function with associated statistics
— CPU time spend, number of times called, etc
— Useful to identify expensive routines
« Call Graph
— Number of times function was called by another, called others
— Gives a sense of relationship between functions
« Annotated Source
— Number of times a line was executed

May 16-17, 2012 www.cac.cornell.edu 34

Cornell University

Center for Advanced Computing

Profiling: sampling
Memory

Read execution state from memory

Executable file

(CoCROo0rn Ty

ccccccnw
| Mcccccm
fes ccaze;,

Read hardware counters

Read symbols, metadata

May 16-17, 2012 www.cac.cornell.edu 35

58y Cornell University
(&)

Center for Advanced Computing

Profiling: sampling: HPCToolkit, PAPI

 PAPI: Provides access to hardware counters

— API hides gory details of hardware/OS platform

— Cache accesses, hits, misses

— FLOPS

— The kinds of data available depend very much on hardware
« HPCToolkit

— Asynchronous sampling of running processes

— Supports OpenMP, MPI, and hybrid

— Supports running against optimized code

May 16-17, 2012 www.cac.cornell.edu

36

http://hpctoolkit.org/

Cornell University
Center for Advanced Computing

------------ Ao eiri- €4 [0 0[H = = 0§ curan]| =0j

4 8]
.man

h
. exchange_3
I RCCE_send
M RCCE_send_general |
W RCCE_wait_until

From Xu Liu, John Mellor-Crummey, and Nathan R. Tallen (2012),
Analyzing Application Performance Bottlenecks on Intel’s SCC.
Presented at TACC-Intel Highly Parallel Computing Symposium, Austin, TX

May 16-17, 2012 www.cac.cornell.edu

37

59 Cornell University

Center for Advanced Computing

Profiling: sampling: PerfExpert

« Developed at TACC

« Easy to use interface over data collected via HPCToolkit and PAPI
« Provides suggestions and “what to fix”

« Runs against fully optimized code with debugging symbols

May 16-17, 2012 www.cac.cornell.edu 38

http://www.tacc.utexas.edu/perfexpert
http://www.tacc.utexas.edu/perfexpert

g9 Cornell University
),

Center for Advanced Computing

Profiling: sampling: PerfExpert

Loop in function main() at Integrator.c:81 (98.9% of the total runtime)

ratio to total instrns
- fleoating point
- data accesses

* GFLOPS (% max)

kkdkkkhkkhkdkhkhkhdk
kb hkdkkhrdkhddhkrthddthbhdhbdthhbdhhddd

performance assessment
* pverall
upper bound estimates
* data accesses
- Lld hits
- L2d hits
- L2d misses
* instruction accesses
- Lli hits
- L2i hits
- L2i misses
* data TLB
instruction TLBE
* branch instructions

*

- correctly predicted:

- mispredicted

* floating-point instr
- fast FP instr
- slow FP instr

May 16-17, 2012

1]

oOHHOODOCDODOODOCDOoOOLDMNMBNbDW

o HFOKFKFOOOODBBKFK OMBMNKH

e P e i i

i B N B B N S Y o
i S N S

e e B S B i
b T e 2 e 2 e

DIDODDIDIDDDIDIDIDIIDIDIDD
DIDODDIDIDDDIDIDDIDDIIDD
>

www.cac.cornell.edu

39

Cornell University

Center for Advanced Computing

Profiling: sampling: PerfExpert

Code Section: Loop in function main() at Integrator.c:81 (98.9% of the total runtime)

change the order of loops
loop i { loop 73 {...} } = loop 7 { loop i {...} 1}
employ loop blocking
loop i {loop k {loop j {c[i][]J] = c[1][]J] + a[i][k] * b[k][3]:}}} —
loop k step 5 {loop j step s {loop i {
for (kk = k; kk < k + 5; kk++) {
for (33 = 37 33 < 3 + s; Jj++) |
c[1][33] = <[i]1[33] + a[i][kk] * b[kk][jJ1:;}}}}}
apply loop fission so every loop accesses just a couple of different arrays
loop i {a[i] = a[i] * b[i] - c[i]:;} =
loop i {a[i] = a[i] * b[i];} loop i {a[i] = a[i] - c[i];}

May 16-17, 2012 www.cac.cornell.edu 40

58y Cornell University
(&)

Center for Advanced Computing

Profiling: IPM

* Integrated Performance Monitoring
* Run against fully optimized code with debugging symbols (-g)

* You need to explicitly pre-load ipm library:
— module load ipm
— export LD PRELOAD=S$TACC IPM LIB/libipm.so
— export IPM REPORT=full
— 1brun <my executable> <my arguments>

* Produces text, html, xml reports of processing and communication statistics
* Very good for quick snapshot of MPI behaviour

May 16-17, 2012 www.cac.cornell.edu 41

http://ipm-hpc.sourceforge.net/
http://ipm-hpc.sourceforge.net/
http://ipm-hpc.sourceforge.net/
http://ipm-hpc.sourceforge.net/
http://ipm-hpc.sourceforge.net/

Cornell Umversltv

Center for Advanced Computing

T H-"

Profiling: IPM

|\Communication balance by task (sorted by MPI time)

B vri_Allreduce
.45 B HPI_Beast
ook B nPl_vaitary
MPT_Waitall
0,35 W HPI_lzend
i API_Zerd
B 0.3 HPI_Bareier
8 B nPI_Cown_rank
Bo.25 HPT_Start
L MPI_Allgather
i 0.2] HPI_Sean
. B HPI_Recy
.13 B nPI_startall
d.1 W HPI_Cown_zize
' W EPI_lrecy
005 B NPI_Serd_init
B 1Pi_Recy_init
o
= 5 & & g & @
sorted indes

May 16-17, 2012 www.cac.cornell.edu 42

Cornell University

Center for Advanced Computing

Profiling: IPM

MESEHEE Buffer Size Distributions: time

100 —

Cals B

Bl

4o

® MPI_Irecw

% conn tine <= buffer =ir-e

I | | | | | | | | |
1 g 1 &4 256 1KB 4B 16ME o4KB Z256KE 1ME 4ME 16ME ©4ME 123MB512MB

Buffer size {bytes)

May 16-17, 2012 www.cac.cornell.edu 43

Cornell Umversltv

Center for Advanced Computing

Profiling:IPM

Message Buffer Size Distributions: Ncalls

100 -
a0 — ® MPI_Allreduce
@ ® MPI_Boaszt
i ® MPI_Waitany
o 11
8 60 . !
- 0
0
\','- gather
40 . h
% .
[]
s
20 =
0 -4

1 4 16 ed 256 1KE dKE 16KE cdkB 256kE 1ME d4ME 16ME odME 128MES12ME
Buffer size (hytes})

cumulative values, values

May 16-17, 2012 www.cac.cornell.edu 44

Cornell Umversltv

T H-"

Profiling:IPM

Center for Advanced Computing

Communication Topology : point to point data flow

a0

G0

40

30

20 =

10 —

20 —

I I I
(=] = (=
] =+ 1)

50—

OO ODE NN

0.13264465 MB
0, 10611572 NB
(0.07955679 ME
0,058305786 NB
0,02652893 NB
0, QO0OGHEG ME

May 16-17, 2012

www.cac.cornell.edu

45

