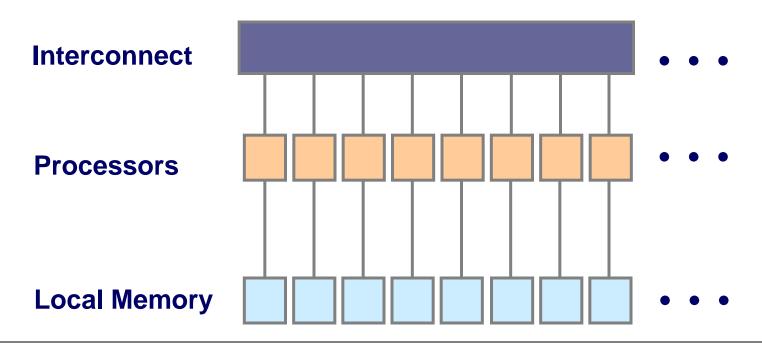


Programming OpenMP

Susan Mehringer
Cornell Center for Advanced Computing
May 17, 2012

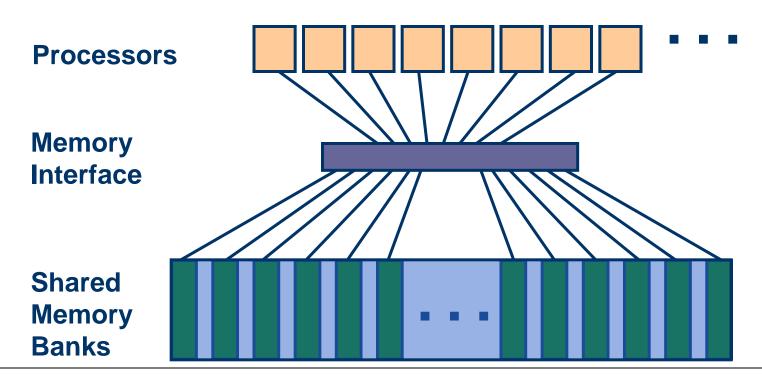
Based on materials developed at CAC and TACC

Overview


- Parallel processing
 - MPP vs. SMP platforms
 - Motivations for parallelization
- What is OpenMP?
- How does OpenMP work?
 - Architecture
 - Fork-join model of parallelism
 - Communication
- OpenMP constructs
 - Directives
 - Runtime Library API
 - Environment variables

MPP = Massively Parallel Processing

SMP = Symmetric MultiProcessing


MPP platforms

• Clusters are distributed memory platforms in which each processor has its own local memory; use MPI on these systems.

SMP platforms

 In each Ranger node, the 16 cores share access to a common pool of memory; likewise for the 8 cores in each node of CAC's v4 cluster

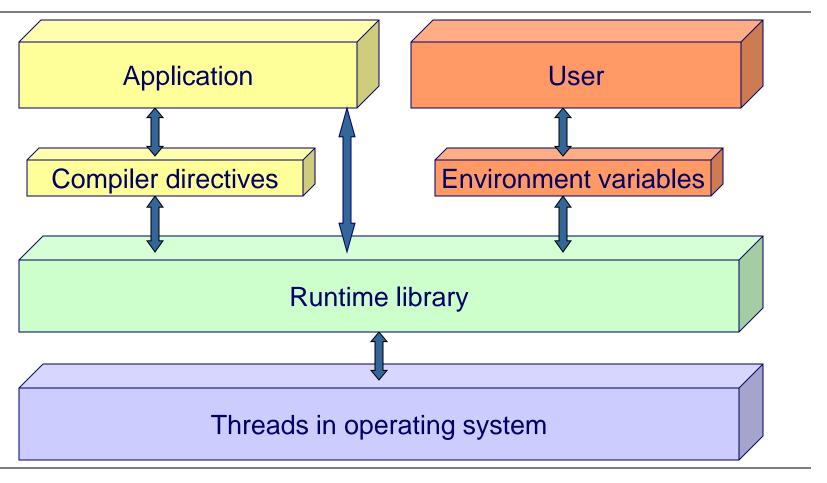
What is OpenMP?

- De facto open standard for scientific parallel programming on Symmetric MultiProcessor (SMP) systems
 - Allows fine-grained (e.g., loop-level) and coarse-grained parallelization
 - Can express both data and task parallelism
- Implemented by:
 - Compiler directives
 - Runtime library (an API, Application Program Interface)
 - Environment variables
- Standard specifies Fortran and C/C++ directives and API
- Runs on many different SMP platforms
- Find tutorials and description at http://www.openmp.org/

Advantages/disadvantages of OpenMP

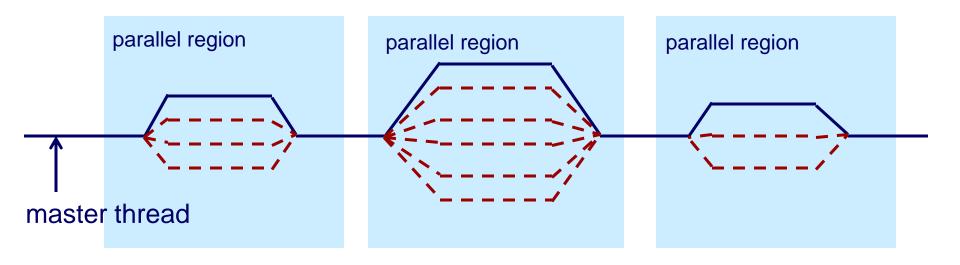
Pros

- Shared Memory Parallelism is easier to learn
- Parallelization can be incremental
- Coarse-grained or fine-grained parallelism
- Widely available, portable


Cons

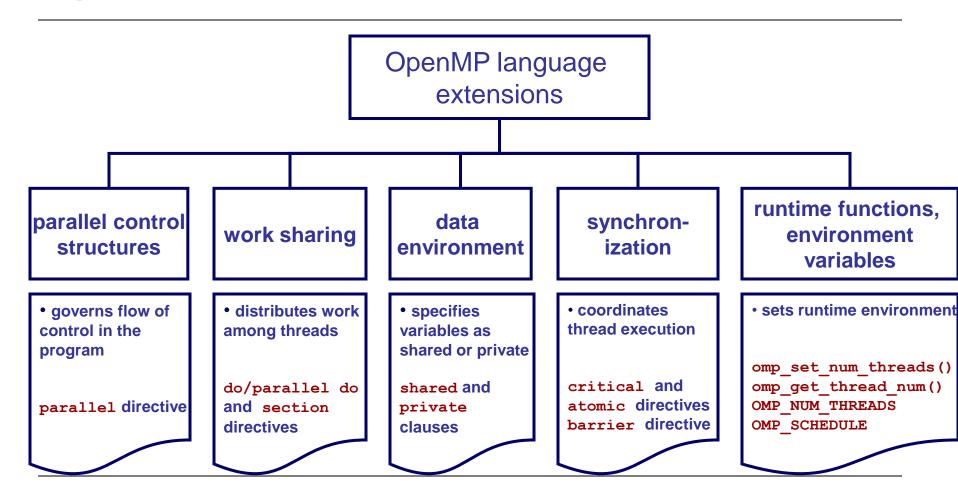
- Scalability limited by memory architecture
- Available on SMP systems only

Benefits


- ➤ Helps prevent CPUs from going idle on multi-core machines
- Enables faster processing of large-memory jobs

OpenMP architecture

OpenMP fork-join parallelism


- Parallel regions are basic "blocks" within code
- A master thread is instantiated at run time and persists throughout execution
- The master thread assembles teams of threads at parallel regions

How do threads communicate?

- Every thread has access to "global" memory (shared) and its own stack memory (private)
- Use shared memory to communicate between threads
- Simultaneous updates to shared memory can create a race condition: the results change with different thread scheduling
- Use mutual exclusion to avoid race conditions
 - But understand that "mutex" serializes performance wherever it is used
 - By definition only one thread at a time can execute that section of code

OpenMP constructs

OpenMP directives

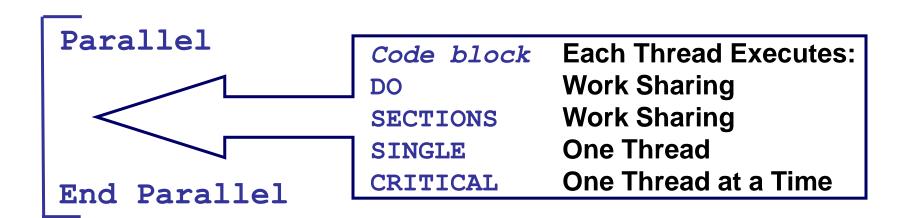
- OpenMP directives are comments in source code that specify parallelism for shared-memory (SMP) machines
- FORTRAN compiler directives begin with one of the sentinels
 !\$OMP, C\$OMP, or *\$OMP use !\$OMP for free-format F90
- C/C++ compiler directives begin with the sentinel #pragma omp

Fortran

```
!$OMP parallel
...
!$OMP end parallel
!$OMP parallel do
   DO ...
!$OMP end parallel do
```

C/C++

```
# pragma omp parallel
    {...}


# pragma omp parallel
for
    for(...) {...}
```

Directives and clauses

- Parallel regions are marked by the parallel directive
- Work-sharing loops are marked by
 - parallel do directive in Fortran
 - parallel for directive in C
- Clauses control the behavior of a particular OpenMP directive
 - 1. Data scoping (Private, Shared, Default)
 - 2. Schedule (Guided, Static, Dynamic, etc.)
 - 3. Initialization (e.g., COPYIN, FIRSTPRIVATE)
 - 4. Whether to parallelize a region or not (if-clause)
 - 5. Number of threads used (NUM_THREADS)

Parallel region and work sharing

Use OpenMP directives to specify Parallel Region and Work Sharing constructs

Parallel DO/for
Parallel SECTIONS

Stand-alone parallel constructs

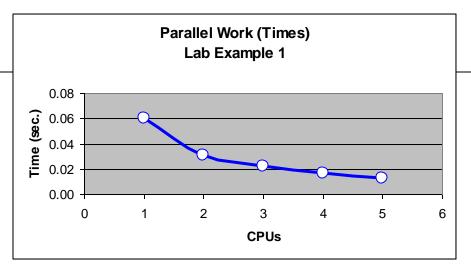
Parallel regions

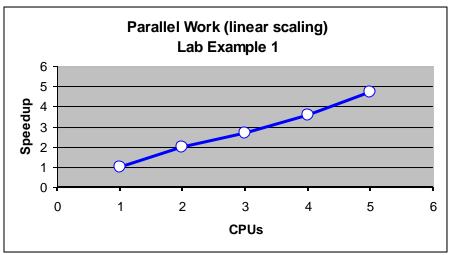
```
1 !$OMP PARALLEL
2          code block
3          call work(...)
4 !$OMP END PARALLEL
```

Line 1 Team of threads is formed at parallel region

Lines 2-3 Each thread executes code block and subroutine call,

no branching into or out of a parallel region


Line 4 All threads synchronize at end of parallel region


(implied barrier)

Parallel work example

Speedup = cputime(1) / cputime(N)

If work is completely parallel, scaling is linear

Work sharing

```
1 !$OMP PARALLEL DO

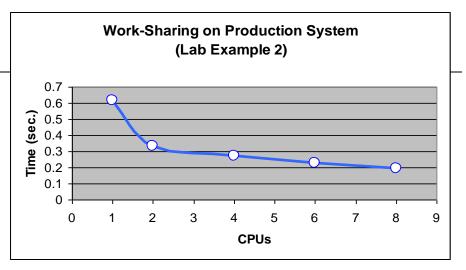
2 do i=1,N

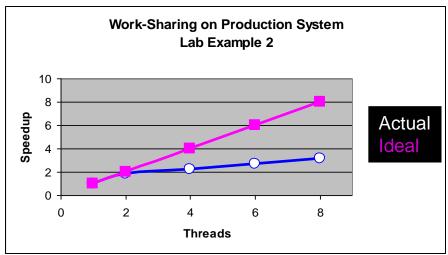
3 a(i) = b(i) + c(i) !not much work

4 enddo

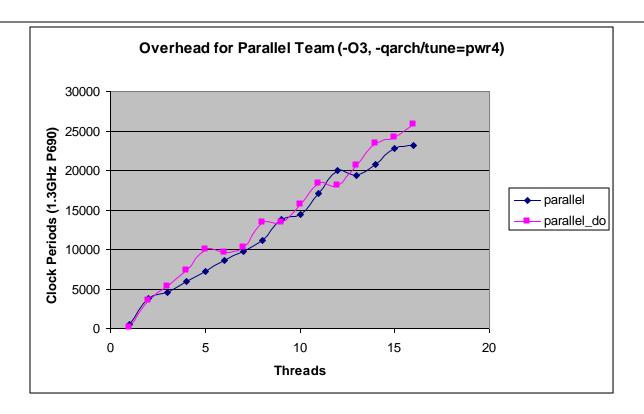
5 !$OMP END PARALLEL DO

Line 1 Team of threads is formed at parallel region


Lines 2-4 Loop iterations are split among threads, each loop iteration must be independent of other iterations


Line 5 (Optional) end of parallel loop (implied barrier at enddo)
```

Work-sharing example


Speedup = cputime(1) / cputime(N)

Scheduling, memory contention and overhead can impact speedup

Team overhead

Increases roughly linearly with number of threads

OpenMP parallel constructs

Replicated : executed by all threads

Work sharing : divided among threads

DO do I = 1,N*4PARALLEL DO do I = 1,N*4{code2} {code} end do PARALLEL end do {code} {code3} END PARALLEL END PARALLEL DO END PARALLEL code1 code1 code1 code1 I=N+1,2N I=2N+1,3N I=3N+1.4N code code code I=N+1,2N I=1,N I=2N+1.3N I=3N+1.4N code code code code code2 code2 code2 code2 code3 code3 code3 code3 Combined Replicated Work sharing

PARALLEL

{code1}

Merging parallel regions

The !\$OMP PARALLEL directive declares an entire region as parallel; therefore, merging work-sharing constructs into a single parallel region eliminates the overhead of separate team formations

```
!SOMP PARALLEL
                                    !$OMP PARALLEL DO
  !$OMP DO
      do i=1,n
                                          do i=1,n
                                              a(i) = b(i) + c(i)
        a(i) = b(i) + c(i)
      enddo
                                          enddo
                                    !SOMP END PARALLEL DO
  !$OMP END DO
  !$OMP DO
                                    !$OMP PARALLEL DO
      do i=1,m
                                          do i=1,m
                                              x(i) = y(i) + z(i)
          x(i) = y(i) + z(i)
      enddo
                                          enddo
  !$OMP END DO
                                    !$OMP END PARALLEL DO
!$OMP END PARALLEL
```

21

Distribution of work: SCHEDULE clause

- !\$OMP PARALLEL DO SCHEDULE(STATIC)
 - Default schedule: each CPU receives one set of contiguous iterations
 - Size of set is ~ (total_no_iterations /no_of_cpus)
- !\$OMP PARALLEL DO SCHEDULE(STATIC,N)
 - Iterations are divided round-robin fashion in chunks of size N
- !\$OMP PARALLEL DO SCHEDULE(DYNAMIC,N)
 - Iterations handed out in chunks of size N as threads become available
- !\$OMP PARALLEL DO SCHEDULE(GUIDED,N)
 - Iterations handed out in pieces of exponentially decreasing size
 - N = minimum number of iterations to dispatch each time (default is 1)
 - Can be useful for load balancing ("fill in the cracks")

OpenMP data scoping

- Data-scoping clauses control how variables are shared within a parallel construct
- These include the shared, private, firstprivate,
 lastprivate, reduction clauses
- Default variable scope:
 - Variables are shared by default
 - Global variables are shared by default
 - Automatic variables within a subroutine that is called from inside a parallel region are private (reside on a stack private to each thread), unless scoped otherwise
 - Default scoping rule can be changed with default clause

PRIVATE and SHARED data

- SHARED Variable is shared (seen) by all processors
- PRIVATE Each thread has a private instance (copy) of the variable
- Defaults: loop indices are private, other variables are shared

```
!$OMP PARALLEL DO
    do i=1,N
        A(i) = B(i) + C(i)
    enddo
!$OMP END PARALLEL DO
```

 All threads have access to the same storage areas for A, B, C, and N, but each loop has its own private copy of the loop index, i.

PRIVATE data example

- In the following loop, each thread needs a PRIVATE copy of temp
 - The result would be unpredictable if temp were shared, because each processor would be writing and reading to/from the same location

- A "lastprivate(temp)" clause will copy the last loop (stack) value of temp to the (global) temp storage when the parallel DO is complete
- A "firstprivate(temp)" initializes each thread's temp to the global value

REDUCTION

 An operation that "combines" multiple elements to form a single result, such as a summation, is called a reduction operation

- Each thread has a private ASUM and APROD (declared as real*8, e.g.), initialized to the operator's identity, 0 & 1, respectively
- After the loop execution, the master thread collects the private values of each thread and finishes the (global) reduction

NOWAIT

- When a work-sharing region is exited, a barrier is implied – all threads must reach the barrier before any can proceed
- By using the NOWAIT clause at the end of each loop inside the parallel region, an unnecessary synchronization of threads can be avoided

```
!SOMP PARALLEL
!$OMP DO
      do i=1,n
         work(i)
      enddo
!$OMP END DO NOWAIT
!$OMP DO schedule(dynamic,M)
      do i=1,m
         x(i) = y(i) + z(i)
      enddo
! SOMP END
!SOMP END PARALLEL
```

Mutual exclusion: atomic and critical directives

- When threads must execute a section of code serially (only one thread at a time can execute it), the region must be marked with CRITICAL / END CRITICAL directives
- Use the "!\$OMP ATOMIC" directive if executing only one operation

```
!$OMP PARALLEL SHARED(sum,X,Y)
...
!$OMP CRITICAL
   call update(x)
   call update(y)
   sum=sum+1
!$OMP END CRITICAL
...
!$OMP END PARALLEL
```

```
!$OMP PARALLEL SHARED(X,Y)
....
!$OMP ATOMIC
sum=sum+1
...
!$OMP END PARALLEL
```

Mutual exclusion: lock routines

 When each thread must execute a section of code serially (only one thread at a time can execute it), locks provide a more flexible way of ensuring serial access than CRITICAL and ATOMIC directives

```
call OMP_INIT_LOCK(maxlock)
!$OMP PARALLEL SHARED(X,Y)
...
call OMP_set_lock(maxlock)
call update(x)
call OMP_unset_lock(maxlock)
...
!$OMP END PARALLEL
call OMP_DESTROY_LOCK(maxlock)
```

Overhead associated with mutual exclusion

All measurements were made in dedicated mode

Open MP exclusion routine/directive	cycles
OMP_SET_LOCK/OMP_UNSET_LOCK	330
OMP_ATOMIC	480
OMP_CRITICAL	510

30

Runtime library functions

<pre>omp_get_num_threads()</pre>	Number of threads in current team
<pre>omp_get_thread_num()</pre>	Thread ID, {0: N-1}
<pre>omp_get_max_threads()</pre>	Number of threads in environment
<pre>omp_get_num_procs()</pre>	Number of machine CPUs
<pre>omp_in_parallel()</pre>	True if in parallel region & multiple threads executing
<pre>omp_set_num_threads(#)</pre>	Changes number of threads for parallel region

More functions and variables

To enable dynamic thread count (not dynamic scheduling!)

<pre>omp_set_dynamic()</pre>	Set state of dynamic threading (true/false)
<pre>omp_get_dynamic()</pre>	True if dynamic threading is on

To control the OpenMP runtime environment

OMP_NUM_THREADS	Set to permitted number of threads
OMP_DYNAMIC	TRUE/FALSE for enable/disable dynamic threading

OpenMP 2.0/2.5: what's new?

- Wallclock timers
- Workshare directive (Fortran 90/95)
- Reduction on array variables
- NUM_THREAD clause

OpenMP 3.1: expected release 2011

- Minor release; will not break existing, correct OpenMP applications
- New features:
 - Adding predefined min and max operators for C and C++
 - extensions to the atomic construct that allow the value of the shared variable that the construct updates to be captured or written without being read
 - extensions to the OpenMP tasking model that support optimization of its use.

OpenMP wallclock timers

```
Real*8 :: omp_get_wtime, omp_get_wtick() (Fortran)
double omp_get_wtime(), omp_get_wtick(); (C)
```

```
double t0, t1, dt, res;
...
t0=omp_get_wtime();
<work>
t1=omp_get_wtime();
dt=t1-t0; res=1.0/omp_get_wtick();
printf("Elapsed time = %lf\n",dt);
printf("clock resolution = %lf\n",res);
```

References

- Current standard
 - http://www.openmp.org/
- Books
 - Parallel Programming in OpenMP, by Chandra, Dagum, Kohr, Maydan, McDonald, Menon
 - Using OpenMP, by Chapman, Jost, Van der Pas (OpenMP 2.5)
- Virtual Workshop Module
 - https://www.cac.cornell.edu/Ranger/OpenMP/