
Introduction to Parallel Programming 

January 14,  2015 

 

www.cac.cornell.edu 



What is Parallel Programming? 

• Theoretically a very simple concept 

– Use more than one processor to complete a task 

 

• Operationally much more difficult to achieve 

– Tasks must be independent 

• Order of execution can’t matter 

 

– How to define the tasks 

• Each processor works on their section of the problem (functional 

parallelism) 

• Each processor works on their section of the data (data parallelism) 

 

– How and when can the processors exchange information 

 

1/14/2015 www.cac.cornell.edu 2 



Why Do Parallel Programming? 

• Solve problems faster; 1 day is better than 30 days 

• Solve bigger problems; model stress on a machine, not just one nut 

• Solve problem on more datasets; find all max values for one month, 

not one day 

• Solve problems that are too large to run on a single CPU 

• Solve problems in real time 

 

 

 

1/14/2015 www.cac.cornell.edu 3 



Is it worth it to go Parallel? 

• Writing effective parallel applications is difficult!! 

 

 – Load balancing is critical 

 – Communication can limit parallel efficiency 

 – Serial time can dominate 

 

• Is it worth your time to rewrite your application? 

 

– Do the CPU requirements justify parallelization? Is your problem really “large”? 

– Is there a library that does what you need (parallel FFT, linear system solving) 

– Will the code be used more than once? 

 

1/14/2015 www.cac.cornell.edu 4 



Terminology 

• node:  a discrete unit of a computer system that typically runs its own instance of 

the operating system 
– Stampede has 6400 nodes 

 

• processor: chip that shares a common memory and local disk 
– Stampede has two Sandy Bridge processors per node 

 

• core:   a processing unit on a computer chip able to support a thread of execution 
– Stampede has 8 cores per processor or 16 cores per node 

 

• coprocessor:  a lightweight processor 
– Stampede has a one Phi coprocessor per node with 61 cores per coprocessor 

 

• cluster: a collection of nodes that function as a single resource 
 

 

1/14/2015 www.cac.cornell.edu 5 



Core 

Node 

Processor 

Coprocessor 

1/14/2015 www.cac.cornell.edu 6 



Definition: each process performs a different "function" or executes 

different code sections that are independent. 

 

Examples:  

 2 brothers do yard work (1 edges & 1 mows) 

 8 farmers build a barn 

 

A 

B C D 

E 

Functional Parallelism 

• Commonly programmed with message-

passing libraries 

 

1/14/2015 www.cac.cornell.edu 7 



Data Parallelism 
Definition: each process does the same work on unique and 

independent pieces of data 

 

Examples:  

 2 brothers mow the lawn 

 8 farmers paint a barn 

 

C 

B 

A 

B B 

• Usually more scalable than functional parallelism 

 

• Can be programmed at a high level with OpenMP, 

or at a lower level using a message-passing library 

like MPI or with hybrid programming. 

1/14/2015 www.cac.cornell.edu 8 



Embarrassing Parallelism  

A special case of Data Parallelism 

Definition: each process performs the same functions but do not 

communicate with each other, only with a “Master” Process.  These 

are often called “Embarrassingly Parallel” codes. 

 

Examples:  

 Independent Monte Carlo Simulations 

 ATM Transactions 

 

Stampede has a special wrapper for submitting this type of job; see  

https://www.xsede.org/news/-/news/item/5778  

1/14/2015 www.cac.cornell.edu 9 

https://www.xsede.org/news/-/news/item/5778
https://www.xsede.org/news/-/news/item/5778
https://www.xsede.org/news/-/news/item/5778


Flynn’s Taxonomy 

• Classification of computer architectures  

• Based on # of concurrent instruction streams and data streams 

 

 

 

 

 

Single 

Instructio

n 

Multiple 

Instruction 

Single 

Program 

Multiple 

Program 

Single Data SISD 

(serial) 

MISD 

(custom) 

Multiple 

Data 

SIMD 

(vector) 

(GPU) 

MIMD 

(superscalar) 

SPMD 

(data 

parallel) 

MPMD 

(task 

parallel) 

1/14/2015 www.cac.cornell.edu 10 



Theoretical Upper Limits to Performance 

• All parallel programs contain: 

– parallel sections (we hope!) 

– serial sections (unfortunately) 

 

• Serial sections limit the parallel effectiveness 

        serial portion         parallel portion 

 1 task      

 2 tasks    

  

      4 tasks      

        

• Amdahl’s Law states this formally 

 

1/14/2015 www.cac.cornell.edu 11 



Amdahl’s Law 

• Amdahl’s Law places a limit on the speedup gained by using multiple processors. 

– Effect of multiple processors on run time 

   tn = (fp / N + fs )t1 

– where  

• fs  = serial fraction of the code 

• fp  = parallel fraction of the code 

• N  = number of processors 

• t1 = time to run on one processor 

 

• Speed up formula: S = 1 / (fs + fp / N) 

– if fs = 0 & fp = 1, then S = N 

 

– If N  infinity: S = 1/fs; if 10% of the code is sequential, you will never speed up by 
more than 10, no matter the number of processors. 

 

 
1/14/2015 www.cac.cornell.edu 12 



Practical Limits: Amdahl’s Law vs. Reality 

• Amdahl’s Law shows a theoretical upper limit for speedup 

•  In reality, the situation is even worse than predicted by Amdahl’s Law due to: 

       – Load balancing (waiting) 

       – Scheduling (shared processors or memory) 

       – Communications 

       – I/O 

0 

10 

20 

30 

40 

50 

60 

70 

80 

0 50 100 150 200 250 

Number of processors 

Amdahl's Law 

Reality 

fp = 0.99 

S

p

e

e

d

u

p 

1/14/2015 www.cac.cornell.edu 13 



High Performance Computing 

Architectures 

1/14/2015 www.cac.cornell.edu 14 



HPC Systems Continue to Evolve Over Time… 

 

Centralized Big-Iron 

Decentralized collections 

Mainframes 

Mini Computers 

PCs 

RISC Workstations 

RISC MPPS 

Specialized 

Parallel Computers 

Clusters Grids + Clusters 

1970 1980 1990 2000 

NOWS 

2010 

Hybrid Clusters 

1/14/2015 www.cac.cornell.edu 15 



Cluster Computing Environment 

… 

Login 

Node(s) 

Access 

Control 

Compute Nodes 

File 

Server(s) 

• Login Nodes 

• File servers & Scratch Space 

• Compute Nodes 

• Batch Schedulers 

1/14/2015 www.cac.cornell.edu 16 



Types of Parallel Computers (Memory Model) 
 

• Useful to classify modern parallel computers by their memory model 

– shared memory architecture 

memory is addressable by all cores and/or processors 

 

– distributed memory architecture 

memory is split up into separate pools, where each pool is addressable 

only by cores and/or processors on the same node 

 

– cluster 

mixture of shared and distributed memory; shared memory on cores in a single 

node and distributed memory between nodes 

 

• Most parallel machines today are multiple instruction, multiple data (MIMD) 

 

1/14/2015 www.cac.cornell.edu 17 



Shared and Distributed Memory Models 

Shared memory: single address space. All 

processors have access to a pool of shared 

memory; easy to build and program, good 

price-performance for small numbers of 

processors; predictable performance due to 

uniform memory access (UMA). 

 

Methods of memory access : 

   - Bus 

   - Crossbar 

Distributed memory: each processor 

has its own local memory. Must do  

message passing to exchange data  

between processors. cc-NUMA enables 

larger number of processors and shared 

memory address space than SMPs; still 

easy to program, but harder and more 

expensive to build. (example: Clusters) 

 

Methods of memory access : 

   - various topological interconnects 

 

1/14/2015 www.cac.cornell.edu 18 



Programming Parallel Computers 

• Programming single-processor systems is (relatively) easy because 

they have a single thread of execution 

 

• Programming shared memory systems can likewise benefit from the 

single address space 

 

• Programming distributed memory systems is more difficult due to 

multiple address spaces and the need to access remote data 

 

• Hybrid programming for distributed and shared memory is even 

more difficult, but gives the programmer much greater flexibility 

1/14/2015 www.cac.cornell.edu 19 



Single Program, Multiple Data (SPMD) 

SPMD: 

 

– One source code is written 

 

– Code can have conditional execution based on which processor is 

executing the copy 

 

– All copies of code are started simultaneously and communicate and 

sync with each other periodically 

 

1/14/2015 www.cac.cornell.edu 20 



SPMD Programming Model 

Processor 0 Processor 1 Processor 2 Processor 3 

source.c  a.out (compiled) 

a.out a.out a.out a.out 

1/14/2015 www.cac.cornell.edu 21 



Shared Memory Programming: OpenMP 

• Shared memory systems have a single address space: 

 

– Applications can be developed in which loop iterations (with no 

dependencies) are executed by different processors 

 

– Application runs as a single process with multiple parallel threads 

 

– OpenMP is the standard for shared memory programming (compiler 

directives) 

 

– Vendors offer native compiler directives 

 

1/14/2015 www.cac.cornell.edu 22 



Distributed Memory Programming:  

Message Passing Interface (MPI) 

 Distributed memory systems have separate pools of memory for 

each processor 

 

– Application runs as multiple processes with separate address spaces 

– Processes communicate data to each other using MPI 

– Data must be manually decomposed 

– MPI is the standard for distributed memory programming (library of 

subprogram calls) 

 

1/14/2015 www.cac.cornell.edu 23 



Hybrid Programming  

• Systems with multiple shared memory nodes 

 

 

• Memory is shared at the node level, distributed above that: 

 

– Applications can be written to run on one node using OpenMP  

 

– Applications can be written using MPI 

 

– Application can be written using both OpenMP and MPI 

 

1/14/2015 www.cac.cornell.edu 24 



References 

• Virtual Workshop module: 

Parallel Programming Concepts and High-Performance Computing 

• HPC terms glossary 

• Jim Demmel, Applications of Parallel Computers. This set of lectures is an 

online rendition of Applications of Parallel Computers taught at U.C. 

Berkeley in Spring 2012. This online course is sponsored by the Extreme 

Science and Engineering Discovery Environment (XSEDE), and is only 

available through the XSEDE User Portal. 

• Ian Foster, Designing and Building Parallel Programs, Addison-Wesley, 

1995. http://www-unix.mcs.anl.gov/dbpp/ This book is a fine introduction to 

parallel programming and available online in its entirety. Some of the 

languages covered in later chapters, such as Compositional C++ and 

Fortran M, are more rare these days, but the concepts have not changed 

much since the book was written. 

1/14/2015 www.cac.cornell.edu 25 

https://www.cac.cornell.edu/VW/parallel/tax.aspx
https://www.cac.cornell.edu/VW/parallel/tax.aspx
https://www.cac.cornell.edu/VW/parallel/tax.aspx
https://www.cac.cornell.edu/VW/parallel/tax.aspx
https://www.cac.cornell.edu/VW/parallel/tax.aspx
http://www.cac.cornell.edu/VW/main/glossary.aspx
https://www.cac.cornell.edu/VW/apc/default.aspx
http://portal.xsede.org/
http://www-unix.mcs.anl.gov/dbpp/
http://www-unix.mcs.anl.gov/dbpp/
http://www-unix.mcs.anl.gov/dbpp/

