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What is Parallel Programming? 

• Theoretically a very simple concept 

– Use more than one processor to complete a task 

 

• Operationally much more difficult to achieve 

– Tasks must be independent 

• Order of execution can’t matter 

 

– How to define the tasks 

• Each processor works on their section of the problem (functional 

parallelism) 

• Each processor works on their section of the data (data parallelism) 

 

– How and when can the processors exchange information 
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Why Do Parallel Programming? 

• Solve problems faster; 1 day is better than 30 days 

• Solve bigger problems; model stress on a machine, not just one nut 

• Solve problem on more datasets; find all max values for one month, 

not one day 

• Solve problems that are too large to run on a single CPU 

• Solve problems in real time 
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Is it worth it to go Parallel? 

• Writing effective parallel applications is difficult!! 

 

 – Load balancing is critical 

 – Communication can limit parallel efficiency 

 – Serial time can dominate 

 

• Is it worth your time to rewrite your application? 

 

– Do the CPU requirements justify parallelization? Is your problem really “large”? 

– Is there a library that does what you need (parallel FFT, linear system solving) 

– Will the code be used more than once? 
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Terminology 

• node:  a discrete unit of a computer system that typically runs its own instance of 

the operating system 
– Stampede has 6400 nodes 

 

• processor: chip that shares a common memory and local disk 
– Stampede has two Sandy Bridge processors per node 

 

• core:   a processing unit on a computer chip able to support a thread of execution 
– Stampede has 8 cores per processor or 16 cores per node 

 

• coprocessor:  a lightweight processor 
– Stampede has a one Phi coprocessor per node with 61 cores per coprocessor 

 

• cluster: a collection of nodes that function as a single resource 
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Definition: each process performs a different "function" or executes 

different code sections that are independent. 

 

Examples:  

 2 brothers do yard work (1 edges & 1 mows) 

 8 farmers build a barn 

 

A 

B C D 

E 

Functional Parallelism 

• Commonly programmed with message-

passing libraries 
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Data Parallelism 
Definition: each process does the same work on unique and 

independent pieces of data 

 

Examples:  

 2 brothers mow the lawn 

 8 farmers paint a barn 

 

C 

B 

A 

B B 

• Usually more scalable than functional parallelism 

 

• Can be programmed at a high level with OpenMP, 

or at a lower level using a message-passing library 

like MPI or with hybrid programming. 
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Embarrassing Parallelism  

A special case of Data Parallelism 

Definition: each process performs the same functions but do not 

communicate with each other, only with a “Master” Process.  These 

are often called “Embarrassingly Parallel” codes. 

 

Examples:  

 Independent Monte Carlo Simulations 

 ATM Transactions 

 

Stampede has a special wrapper for submitting this type of job; see  

https://www.xsede.org/news/-/news/item/5778  
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Flynn’s Taxonomy 

• Classification of computer architectures  

• Based on # of concurrent instruction streams and data streams 
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Theoretical Upper Limits to Performance 

• All parallel programs contain: 

– parallel sections (we hope!) 

– serial sections (unfortunately) 

 

• Serial sections limit the parallel effectiveness 

        serial portion         parallel portion 

 1 task      

 2 tasks    

  

      4 tasks      

        

• Amdahl’s Law states this formally 
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Amdahl’s Law 

• Amdahl’s Law places a limit on the speedup gained by using multiple processors. 

– Effect of multiple processors on run time 

   tn = (fp / N + fs )t1 

– where  

• fs  = serial fraction of the code 

• fp  = parallel fraction of the code 

• N  = number of processors 

• t1 = time to run on one processor 

 

• Speed up formula: S = 1 / (fs + fp / N) 

– if fs = 0 & fp = 1, then S = N 

 

– If N  infinity: S = 1/fs; if 10% of the code is sequential, you will never speed up by 
more than 10, no matter the number of processors. 
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Practical Limits: Amdahl’s Law vs. Reality 

• Amdahl’s Law shows a theoretical upper limit for speedup 

•  In reality, the situation is even worse than predicted by Amdahl’s Law due to: 

       – Load balancing (waiting) 

       – Scheduling (shared processors or memory) 

       – Communications 

       – I/O 
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High Performance Computing 

Architectures 
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HPC Systems Continue to Evolve Over Time… 
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Decentralized collections 

Mainframes 

Mini Computers 

PCs 

RISC Workstations 

RISC MPPS 

Specialized 

Parallel Computers 

Clusters Grids + Clusters 

1970 1980 1990 2000 

NOWS 

2010 

Hybrid Clusters 
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Cluster Computing Environment 

… 

Login 

Node(s) 

Access 
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• Login Nodes 

• File servers & Scratch Space 

• Compute Nodes 

• Batch Schedulers 
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Types of Parallel Computers (Memory Model) 
 

• Useful to classify modern parallel computers by their memory model 

– shared memory architecture 

memory is addressable by all cores and/or processors 

 

– distributed memory architecture 

memory is split up into separate pools, where each pool is addressable 

only by cores and/or processors on the same node 

 

– cluster 

mixture of shared and distributed memory; shared memory on cores in a single 

node and distributed memory between nodes 

 

• Most parallel machines today are multiple instruction, multiple data (MIMD) 
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Shared and Distributed Memory Models 

Shared memory: single address space. All 

processors have access to a pool of shared 

memory; easy to build and program, good 

price-performance for small numbers of 

processors; predictable performance due to 

uniform memory access (UMA). 

 

Methods of memory access : 

   - Bus 

   - Crossbar 

Distributed memory: each processor 

has its own local memory. Must do  

message passing to exchange data  

between processors. cc-NUMA enables 

larger number of processors and shared 

memory address space than SMPs; still 

easy to program, but harder and more 

expensive to build. (example: Clusters) 

 

Methods of memory access : 

   - various topological interconnects 
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Programming Parallel Computers 

• Programming single-processor systems is (relatively) easy because 

they have a single thread of execution 

 

• Programming shared memory systems can likewise benefit from the 

single address space 

 

• Programming distributed memory systems is more difficult due to 

multiple address spaces and the need to access remote data 

 

• Hybrid programming for distributed and shared memory is even 

more difficult, but gives the programmer much greater flexibility 
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Single Program, Multiple Data (SPMD) 

SPMD: 

 

– One source code is written 

 

– Code can have conditional execution based on which processor is 

executing the copy 

 

– All copies of code are started simultaneously and communicate and 

sync with each other periodically 
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SPMD Programming Model 

Processor 0 Processor 1 Processor 2 Processor 3 

source.c  a.out (compiled) 

a.out a.out a.out a.out 
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Shared Memory Programming: OpenMP 

• Shared memory systems have a single address space: 

 

– Applications can be developed in which loop iterations (with no 

dependencies) are executed by different processors 

 

– Application runs as a single process with multiple parallel threads 

 

– OpenMP is the standard for shared memory programming (compiler 

directives) 

 

– Vendors offer native compiler directives 
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Distributed Memory Programming:  

Message Passing Interface (MPI) 

 Distributed memory systems have separate pools of memory for 

each processor 

 

– Application runs as multiple processes with separate address spaces 

– Processes communicate data to each other using MPI 

– Data must be manually decomposed 

– MPI is the standard for distributed memory programming (library of 

subprogram calls) 
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Hybrid Programming  

• Systems with multiple shared memory nodes 

 

 

• Memory is shared at the node level, distributed above that: 

 

– Applications can be written to run on one node using OpenMP  

 

– Applications can be written using MPI 

 

– Application can be written using both OpenMP and MPI 
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