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RAM Arrangement on Stampede 

• Many nodes distributed memory  

– each node has its own local memory 

– not directly addressable from other nodes 

• Multiple sockets per node  

– each node has 2 sockets (chips) 

• Multiple cores per socket  

– each socket (chip) has 8 cores 

• Memory spans all 16 cores shared memory  

– node’s full local memory is addressable from any core in any socket 

• Memory is attached to sockets  

– 8 cores sharing the socket have fastest access to attached memory 

– we are ignoring the attached MIC coprocessors for the moment… 
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How do we deal with NUMA (Non-Uniform Memory Access)? 

Standard models for parallel programs assume a uniform architecture – 

• Threads for shared memory  

– parent process uses pthreads or OpenMP to fork multiple threads  

– threads share the same virtual address space  

– also known as SMP = Symmetric MultiProcessing 

• Message passing for distributed memory  

– processes use MPI to pass messages (data) between each other  

– each process has its own virtual address space 

If we attempt to combine both types of models – 

• Hybrid programming  

– try to exploit the whole shared/distributed memory hierarchy 

Dealing with NUMA 
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Why hybrid? 

• Eliminates domain decomposition at node level 

• Automatic memory coherency at node level 

• Lower (memory) latency and data movement within node  

• Can synchronize on memory instead of barrier 

 

Why not hybrid? 

• An SMP algorithm created by aggregating MPI parallel components on 

a node (or on a socket) may actually run slower 

• Possible waste of effort 

Why Hybrid? Or Why Not? 
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Motivation for Hybrid 

• Balance the computational load  

• Reduce memory traffic, especially for memory-bound applications  



6 

Two Views of a Node 
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Two Views = Two Ways to Write Parallel Programs  

• OpenMP (or pthreads) only  

– launch one process per node  

– have each process fork one thread (or maybe more) per core  

– share data using shared memory  

– can’t share data with a different process (except maybe via file I/O) 

• MPI only  

– launch one process per core, on one node or on many  

– pass messages among processes without concern for location  

– (maybe create different communicators intra-node vs. inter-node)  

– ignore the potential for any memory to be shared 

• With hybrid OpenMP/MPI programming, we want each MPI process 

to launch multiple OpenMP threads that can share local memory 
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Some Possible MPI + Thread Configurations  

• Treat each node as an SMP  

– launch a single MPI process per node  

– create parallel threads sharing full-node memory  

– typically want 16 threads/node on Stampede, e.g. 

• Treat each socket as an SMP  

– launch one MPI process on each socket  

– create parallel threads sharing same-socket memory  

– typically want 8 threads/socket on Stampede, e.g. 

• No SMP, ignore shared memory (all MPI)  

– assign an MPI process to each core  

– in a master/worker paradigm, one process per node may be master  

– not really hybrid, may at least make a distinction between nodes 
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Creating Hybrid Configurations  

To achieve configurations like these, we must be able to:  

• Assign to each process/thread an affinity for some set of cores  

• Make sure the allocation of memory is appropriately matched 

Master MPI Process + Worker Thread 

Single MPI Process on Core 

16 MPI Tasks 
1 MPI Task 
16 Threads/Task 

2 MPI Tasks 
8 Threads/Task 

Worker Thread for Master MPI Process 

Pure SMP Node Pure MPI Node 



10 

NUMA Operations 

Where do processes, threads, and memory allocations get assigned? 

• If memory were completely uniform, there would be no need to worry 

about questions like, “where do processes go?” 

• Only for NUMA is the placement of processes/threads and allocated 

memory (NUMA control) of any importance 

The default NUMA control is set through policy 

• The policy is applied whenever a process is executed, or a thread is 

forked, or memory is allocated 

• These are all events that are directed from within the kernel 
 

  NUMA control is managed by the kernel.  

  NUMA control can be changed with numactl. 
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Process Affinity and Memory Policy  

• One would like to set the affinity of a process for a certain socket or 

core, and the allocation of data in memory relative to a socket or core 

• Individual users can alter kernel policies 

(setting Process Affinity and Memory Policy == PAMPer)  

– users can PAMPer their own processes  

– root can PAMPer any process  

– careful, libraries may PAMPer, too! 

• Means by which Process Affinity and Memory Policy can be changed:  

1. dynamically on a running process (knowing process id)  

2. at start of process execution (with wrapper command)  

3. within program through F90/C API 



12 

8,9,10,11, 
12,13,14,15 
 

0,1,2,3, 
4,5,6,7 

0 1 

Using numactl, at the Process Level  

For a Process: 

Socket Control 

For a Process’s Memory: 

Socket Control 

For a Process: 

Core Control 

socket assignment 

-N 

memory allocation 

-l -i --preferred -m 

(local, interleaved, preferred, 

mandatory) 

core assignment 

-C 

numactl <option socket(s)/core(s)> ./a.out  
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Socket 

Affinity  
-N  {0,1}  

Execute process on cores of this 

(these) socket(s) only.  

Memory 

Policy  
-l  no argument  

Allocate on current socket; 

fallback to any other if full. 

Memory 

Policy  
-i  {0,1}  

Allocate round robin (interleave) 

on these sockets.  No fallback.  

Memory 

Policy 
--preferred= 

{0,1} 

select one  

Allocate on this socket; fallback to 

any other if full.  

Memory 

Policy  
-m  {0,1}  

Allocate only on this (these) 

socket(s). No fallback. 

Core 

Affinity  
-C  

{0,1,2,3,4,5,6,7,

8,9,10,11,12,13,

14,15}  

Execute process on this (these) 

core(s) only. 

Quick Guide to numactl 
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job script (Bourne shell) job script (C shell) 

#SBATCH -n 2 -N 2 #SBATCH -n 2 -N 2 

... ... 

export OMP_NUM_THREADS=16 setenv OMP_NUM_THREADS 16 

...  ...  

ibrun numactl -i all ./a.out  ibrun numactl -i all ./a.out  

SMP Nodes 

Hybrid batch script for 16 threads/node 

• Specify total MPI tasks to be started by batch 

• Specify total nodes equal to tasks 

• Set number of threads for each process  

• PAMPering at job level  

– controls behavior (e.g., process-core affinity) for ALL processes 

– no simple/standard way to control thread-core affinity with numactl 
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SMP Sockets 

Hybrid batch script for 2 tasks/node, 8 threads/task 

• Specify total MPI tasks to be started by batch 

• Specify total nodes equal to tasks/2 (so 2 tasks/node) 

• Set number of threads for each process  

• PAMPering at process level, must create script to manage affinity 

– tacc_affinity script pins tasks to sockets, ensures local memory allocation 

– use it as a numactl starting point if it’s not quite right for your application 

 
job script (Bourne shell) job script (C shell) 

#SBATCH -n 4 -N 2 #SBATCH -n 4 -N 2 

... ... 

export OMP_NUM_THREADS=8 setenv OMP_NUM_THREADS 8 

...  ...  

ibrun tacc_affinity ./a.out  ibrun tacc_affinity ./a.out  
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Basic Hybrid Program Template  

Start with MPI initialization MPI_Init 

... 

(Serial regions are executed by the  

master thread of the MPI process)  

MPI_Call 

... 

Create OMP parallel regions within  

each MPI process  

OMP parallel 

... 

–  MPI calls may be allowed here too  

–  MPI rank is known to all threads 

MPI_Call 

...  

 end parallel 

... 

Call MPI in single-threaded regions  MPI_Call 

... 

Finalize MPI MPI_Finalize 
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Types of MPI Calls Among Threads  

Single-threaded messaging  

• Call MPI from a serial region 

• Call MPI from a single thread 

within a parallel region 

   

 

 

Multi-threaded messaging 

• Call MPI from multiple threads 

within a parallel region 

• Requires an implementation of 

MPI that is thread-safe 

Rank to rank 

rank-thread ID to rank-thread ID 

Node Node 

Node Node 
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Multiple Threads Calling MPI  

• Thread ID as well as rank can be used in communication  

• Technique is illustrated in multi-thread “ping” (send/receive) example  
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call mpi_init_thread( MPI_THREAD_MULTIPLE, iprovided, ierr) 

call mpi_comm_rank(MPI_COMM_WORLD, irank, ierr) 

call mpi_comm_size( MPI_COMM_WORLD, nranks, ierr) 

if (iprovided >= MPI_THREAD_MULTIPLE) then    ! All threads can call MPI 

!$OMP parallel private(j, ithread, nthreads) 

   nthreads=OMP_GET_NUM_THREADS() 

   ithread   =OMP_GET_THREAD_NUM() 

   call pwork(ithread, irank, nthreads, nranks…) 

   if(irank == 0) then 

      call mpi_send(ithread,1,MPI_INTEGER, 1,   ithread, MPI_COMM_WORLD, ierr) 

   else 

      call mpi_recv(           j,1,MPI_INTEGER, 0,   ithread, MPI_COMM_WORLD, istat, ierr) 

      print*, "Yep, this is ",irank," thread ", ithread," I received from ", j 

   endif 

!$OMP end parallel 

endif 

Communicate between ranks. 

Threads use tags to differentiate. 

Example: Multiple Threads Calling MPI  
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NUMA Control in Code, at the Thread Level  

• Within a code, Scheduling Affinity and Memory Policy (SCAMPer?) 

can be examined and changed using libnuma routines:  

– sched_getaffinity, sched_setaffinity  

– get_mempolicy, set_mempolicy 

• This is the only way to set affinities and policies that differ per thread 

• To make scheduling assignments, set bits in a mask:  

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Assignment to Core 0 

Assignment to Core 15 

Assignment to Core 0 or 15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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Code Example for Scheduling Affinity 

... 

#include <spawn.h>            //C API parameters and prototypes 

... 

int icore=3;                  //Set core number 

cpu_set_t cpu_mask;           //Allocate mask 

... 

CPU_ZERO(     &cpu_mask);     //Set mask to zero 

CPU_SET(icore,&cpu_mask);     //Set mask with core # 

 

err = sched_setaffinity( (pid_t)0 ,          //Set the affinity 

                         sizeof(cpu_mask),  

                         &cpu_mask); 



Programming for MIC: Hybrid and Heterogeneous 

• Each Stampede node currently has 2 processors + 1 MIC card 

• MIC = Many Integrated Cores = a “coprocessor” on a PCIe card that 

features >60 cores; released as Xeon Phi™ 

– Represents Intel’s response to GPGPU, especially NVIDIA’s CUDA 

– Answers the question: if 8 modern Xeon cores fit on a die, how many 

early Pentiums would fit? 

• MIC answers CUDA’s API problem: just compile like any normal code 

– Instruction set is x86 with support for 64-bit addressing 

– Recent x86 extensions may not be available 

– Developers use familiar Intel compilers, libraries, and tools 

• However, MIC adds yet another level of programming complexity 

– Stampede is a multi-core machine where not all the cores are the same 

12/11/2012 www.cac.cornell.edu 22 



MIC Strategies for HPC Codes 

12/11/2012 

No change – 

run on CPUs, 

MICs, or both 

Expand existing 

hybrids; or, add 

OpenMP offload 

Build on libraries 

like Intel MKL, 

PETSc, etc. 

Initial MPI code, 

could be hybrid 

with OpenMP 

www.cac.cornell.edu 23 



OpenMP Offload Constructs: Base Program 

 

 

• Objective: offload foo to 

a device  

• Use OpenMP to do the 

offload 

 

12/11/2012 

#include <omp.h>  
#define N 10000  
 
void foo(double *, double *, double *, int ); 
int main(){  
     int i; double a[N], b[N], c[N];  
     for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;} 
 
     ... 
 
     foo(a,b,c,N);  
}  
 
void foo(double *a, double *b, double *c, int n){  
     int i; 
 
     for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }  

www.cac.cornell.edu 24 



OpenMP Offload Constructs: Requirements 

 

 

• Direct (Intel) compiler to 

offload function or block  

• “Decorate” function and 

prototype  

• Ideally, familiar-looking 

OpenMP directives work 

on device  

 

12/11/2012 

#include <omp.h>  
#define N 10000  
#pragma <offload_function_spec>  
void foo(double *, double *, double *, int );  
int main(){  
     int i; double a[N], b[N], c[N];  
     for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;}  
 
     ... 
     #pragma <offload_this>  
     foo(a,b,c,N);  
}  
#pragma <offload_function_spec>  
void foo(double *a, double *b, double *c, int n){  
     int i;  
     #pragma omp parallel for  
     for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }   

www.cac.cornell.edu 25 



Pros and Cons of MIC Programming Models 

• Offload engine: MIC serves as coprocessor for the host 

– Pros: distinct hardware gets distinct role; programmable via simple calls 

to a library such as MKL, or via directives (we’ll go into depth on this) 

– Cons: PCIe is the only path for most work; difficult to retain data on card 

• “Symmetric” #1: Everything is just an MPI core 

– Pros: MPI works for all cores (though 1 MIC core < 1 server core) 

– Cons: memory may be insufficient to support a mOS plus lots of data; 

fails to take good advantage of shared memory; PCIe is a bottleneck 

• “Symmetric” #2: MIC and host are just different SMPs 

– Pros: MPI/OpenMP works for both host and MIC; more efficient use of 

limited PCIe bandwidth and limited MIC memory 

– Cons: hybrid programming is already tough on homogeneous SMPs; not 

much experience with OpenMP-based hybrids scaling to 60+ cores 

12/11/2012 www.cac.cornell.edu 26 



Quick Guide to KMP_AFFINITY 

• Set this environment variable to influence thread affinity generally 

• Useful for CPU and/or MIC models based on OpenMP (SMP, offload) 

export KMP_AFFINITY=<type> (for SMP) 

export MIC_KMP_AFFINITY=<type> (for offload) 

27 

Type Effect 

compact Pack threads close to each other. 

explicit Use the proclist modifier to pin threads. 

none Does not pin threads. 

scatter Round-robin threads to cores. 

balanced (Phi only) Use scatter, but keep OMP thread ids consecutive. 



KMP_AFFINITY Types and Thread Placement 
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• Imagine a system with 4 cores and 4 hardware threads /core 

• Placement of 8 threads is illustrated for the 3 types 

• Compact type does not fully utilize all cores; not recommended 



Roadmap: What Comes Next? 

• Expect many of the upcoming large systems to be accelerated 

• MPI + OpenMP will be the main HPC programming model 

– If you are not using Intel TBBs or Cilk 

– If you are not spending all your time in libraries (MKL, etc.) 

• Many HPC applications are pure-MPI codes 

– Start thinking about upgrading to a hybrid scheme 

– Adding OpenMP is a larger effort than adding MIC directives 

• Special MIC/OpenMP considerations 

– Many more threads will be needed: 

60+ cores on production Xeon Phi™ ➞ 60+/120+/240+ threads 

– Good OpenMP scaling (and vectorization) are much more important 

12/11/2012 www.cac.cornell.edu 29 
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Conclusions 

• On heterogeneous NUMA systems like Stampede, placement and 

binding of processes and their associated memory are important 

performance considerations.  

• Process Affinity and Memory Policy have a significant effect on pure 

MPI, pure OpenMP, and Hybrid codes.  

• Simple numactl commands and APIs allow users to control affinity of 

processes and threads and memory assignments.  

• Future prospects for hybrid programming:  

– Core counts will increase on both processors and coprocessors. 

– Even more effort will be focused on process scheduling and data locality.  

– Expect to see more multi-threaded libraries; be alert for their potential 

interaction with your own multithreading strategy. 
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Extra Slides: MPI-2 and Multithreading 

32 



33 

• Consider thread safety when calling MPI from threads 

• Use MPI_Init_thread to select/determine the level of thread support  

– Supported in MPI-2, substitute for the usual MPI_Init 

• Thread safety is identified/controlled by MPI’s provided types 

– Single means no multi-threading  

– Funneled means only the master thread can call MPI  

– Serialized means multiple threads can call MPI, 

   but only 1 call can be in progress at a time  

– Multiple means MPI is thread safe 

• Monotonic values are assigned to parameters 

MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED 

<  MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE 

MPI-2 and Thread Safety  
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MPI-2’s MPI_Init_thread 

• Input: rqd, or “required” (integer)  

– Indicates the desired level of thread support 

• Output: pvd, or “provided” (integer)  

– Indicates the available level of thread support 

• If thread level rqd is supported, the call returns pvd = rqd 

• Otherwise, pvd returns the highest provided level of support 

call MPI_Init_thread(                          irqd, ipvd, ierr) 

int MPI_Init_thread (int *argc, char ***argv, int rqd, int *pvd) 

int MPI::Init_thread(int& argc, char**& argv, int rqd) 

Syntax: 
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MPI-2 Thread Support Levels 

Support Levels Description 

MPI_THREAD_SINGLE Only one thread will execute. 

MPI_THREAD_FUNNELED 

Process may be multi-threaded, 

but only the main thread will make 

MPI calls (calls are “funneled” to 

main thread). *Default*  

MPI_THREAD_SERIALIZE 

Process may be multi-threaded, 

and any thread can make MPI 

calls, but threads cannot execute 

MPI calls concurrently; they must 

take turns (calls are “serialized”).  

MPI_THREAD_MULTIPLE 
Multiple threads may call MPI, with 

no restriction.  
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Fortran C 

include 'mpif.h' 

program hybsimp 

 

 

call MPI_Init(ie) 

call MPI_Comm_rank(...irk,ie) 

call MPI_Comm_size(...isz,ie) 

!Setup shared mem, comp/comm 

 

!$OMP parallel do 

  do i=1,n 

    <work> 

  enddo 

 

!Compute & communicate 

call MPI_Finalize(ierr) 

end 

#include <mpi.h> 

int main(int argc, 

  char **argv) { 

int rank, size, ie, i; 

ie= MPI_Init(&argc,&argv[]); 

ie= MPI_Comm_rank(...&rank); 

ie= MPI_Comm_size(...&size); 

//Setup shared mem, comp/comm 

 

#pragma omp parallel for 

  for(i=0; i<n; i++){ 

    <work> 

  } 

 

// compute & communicate 

ie= MPI_Finalize(); 

} 

Example: Single-Threaded MPI Calls  
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Funneled MPI Calls via Master  

• Must have support for MPI_THREAD_FUNNELED or higher  

• Best to use OMP_BARRIER  

– there is no implicit barrier in the master workshare construct, 

OMP_MASTER  

– in the example, the master thread will execute a single MPI call within the 

OMP_MASTER construct  

– all other threads will be sleeping 
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Example: Funneled MPI Calls via Master  

Fortran C 

include 'mpif.h' 

program hybmas 

 

 

 

!$OMP parallel 

 

  !$OMP barrier 

  !$OMP master 

 

  call MPI_<Whatever>(...,ie) 

  !$OMP end master 

  !$OMP barrier 

 

!$OMP end parallel 

end 

#include <mpi.h> 

int main(int argc, 

  char **argv) { 

int rank, size, ie, i; 

 

#pragma omp parallel 

{ 

  #pragma omp barrier 

  #pragma omp master 

  { 

    ie= MPI_<Whatever>(...); 

  } 

  #pragma omp barrier 

 

} 

} 
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Serialized MPI Calls and OpenMP  

• Must have support for MPI_THREAD_SERIALIZED or higher  

• Best to use OMP_BARRIER only at beginning, since there is an 

implicit barrier in the SINGLE workshare construct, OMP_SINGLE  

– Example is the simplest one: any thread (not necessarily master) 

will execute a single MPI call within the OMP_SINGLE construct  

– All other threads will be sleeping 
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Example: Serialized MPI Calls and OpenMP 

Fortran C 

include 'mpif.h' 

program hybsing 

 

 

call MPI_Init_thread( & 

MPI_THREAD_SERIALIZED,ipvd,ie) 

!$OMP parallel 

 

  !$OMP barrier 

  !$OMP single 

 

  call MPI_<Whatever>(...,ie) 

  !$OMP end single 

  !Don't need OMP barrier 

!$OMP end parallel 

end 

#include <mpi.h> 

int main(int argc, 

  char **argv) { 

int rank, size, ie, i; 

ie= MPI_Init_thread(  

MPI_THREAD_SERIALIZED,ipvd); 

#pragma omp parallel 

{ 

  #pragma omp barrier 

  #pragma omp single 

  { 

    ie= MPI_<Whatever>(...); 

  } 

  //Don't need omp barrier 

} 

} 
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Overlapping Work & MPI Calls  

• One core is capable of saturating the lanes of the PCIe network link...  

– Why use all cores to communicate?  

– Instead, communicate using just one or several cores  

– Can do work with the rest during communication 

• Must have support for MPI_THREAD_FUNNELED or higher to do 

this  

• Can be difficult to manage and load-balance!  
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Example: Overlapping Work & MPI Calls  

Fortran C 

include 'mpif.h' 

program hybsing 

 

 

!$OMP parallel 

 

  if (ithread .eq. 0) then 

  call MPI_<Whatever>(...,ie) 

  else 

    <work> 

  endif 

 

!$OMP end parallel 

end 

#include <mpi.h> 

int main(int argc, 

  char **argv) { 

int rank, size, ie, i; 

#pragma omp parallel 

{ 

  if (thread == 0){ 

    ie= MPI_<Whatever>(...); 

  } 

  if(thread != 0){ 

    <work> 

  } 

} 

} 


