
Pro�ling and Debugging Lab

Parallel Computing on Stampede

Aaron Birkland

Cornell Center for Advan
ed Computing

O
t 30, 2013

GDB debugging

This lab exer
ise serves as an introdu
tion to debugging via GDB (The GNU Debugger).

While one may normally wish to debug within an IDE using a
omfortable GUI, GDB

and its
ommand-line interfa
e is lightweight, powerful, installed virtually everywhere, and

usable with little fuss. It is a useful \least
ommon denominator" to know.

This lab will fo
us around a poorly program \s
ramble"
ontaining several bugs. This

program is supposed to a

ept a user-provided text string and print a s
rambled represen-

tation of this string to STDOUT.

Setup

To begin, we will unpa
k the lab materials and
ompile the example program.

1. Unpa
k the lab materials into your home dire
tory if you haven't done so already.

$
d

$ tar xvf ~tg459572/LABS/profile_debug.tar

$
d profile_debug

2. Compile the s
ramble program. We are intentionally starting o� without spe
ifying

debug symbols.

$ g

 s
ramble.
 -o s
ramble

3. Run the s
ramble program with some text to s
ramble as an argument. It should

rash with a segmentation fault.

$./s
ramble "s
ramble me"

Segmentation fault (
ore dumped)

Cornell Center for Advan
ed Computing 1

Analyzing
ore dumps

When a program
rashes unexpe
tedly, the OS
an dump a
opy of its
urrent memory state

into a
ore �le. This �le
an be analyzed later with GDB. Typi
ally, a user
an set a size

limit for
ore dumps. This is useful to prevent serious disk usage mishaps for programs that

use large amounts of memory. On Stampede, the default is 0, i.e. it will not dump a
ore

grater than zero bytes large unless you dire
t otherwise.

1. In the bash shell (default on Stampede), use ulimit -a to see default values. (If you

swit
hed to C shell, use limit instead)

$ ulimit -a

ore file size (blo
ks, -
) 0

data seg size (kbytes, -d) unlimited

s
heduling priority (-e) 0

file size (blo
ks, -f) unlimited

pending signals (-i) 514620

max lo
ked memory (kbytes, -l) 64

max memory size (kbytes, -m) unlimited

open files (-n) 1024

pipe size (512 bytes, -p) 8

POSIX message queues (bytes, -q) 819200

real-time priority (-r) 0

sta
k size (kbytes, -s) unlimited

pu time (se
onds, -t) unlimited

max user pro
esses (-u) 150

virtual memory (kbytes, -v) 8388608

file lo
ks (-x) unlimited

As you
an see, the default is 0.

2. Change the
ore dump size to unlimited. (on C shell use limit
oredumpsize

unlimited)

$ ulimit -
 unlimited

3. Run the s
ramble program again and look for the dump �le. Its name should be some-

thing like
ore.PID where PID is the pro
ess ID number. For example,
ore.11781.

$./s
ramble "s
ramble me"

Segmentation fault (
ore dumped)

4. Run GDB using the exe
utable and
ore �le as arguments. This will tell the debugger

to analyze the given memory image
reated by the given exe
utable.

Cornell Center for Advan
ed Computing 2

$ gdb s
ramble
ore.29016

You will see some text
ash by saying how the program was invoked and how it

rashed (Segmentation fault), ending up at a gdb prompt (gdb). Note the various

\no debugging symbols found" messages.

Reading symbols from /home1/01871/apb18/profile_debug/s
ramble...

(no debugging symbols found)...done.

[New Thread 29016℄

Reading symbols from /lib64/lib
.so.6...(no debugging symbols found)...done.

Loaded symbols for /lib64/lib
.so.6

Reading symbols from /lib64/ld-linux-x86-64.so.2...

(no debugging symbols found)...done.

Loaded symbols for /lib64/ld-linux-x86-64.so.2

Reading symbols from /lib/modules/2.6.32-279.14.1.el6.x86_64/vdso/vdso.so...

Reading symbols from

/usr/lib/debug/lib/modules/2.6.32-279.14.1.el6.x86_64/vdso/vdso.so.debug...done.

Loaded symbols for /lib/modules/2.6.32-279.14.1.el6.x86_64/vdso/vdso.so

Core was generated by `./s
ramble s
ramble me'.

Program terminated with signal 11, Segmentation fault.

#0 0x00000000004005b1 in s
ramble ()

Missing separate debuginfos, use: debuginfo-install glib
-2.12-1.80.el6_3.6.x86_64

(gdb)

5. To �gure out where the program
rashed, print out a sta
k ba
ktra
e. At the (gdb)

prompt, type in bt to print a sta
k ba
ktra
e.

(gdb) bt

#0 0x000000000040055e in s
ramble ()

#1 0x00000000004005b6 in main ()

As you
an see, the output is somewhat helpful. We
an see the memory addresses

of our sta
k frames, as well as the name of the fun
tions they represent. So we know

that our program
rashed somewhere in s
ramble(), but not mu
h else. Look at the

ode. Intuitively, strlen()
ould be a problem (is the string null terminated?), as

ould array bounds or pointers. We don't have enough information to tell.

6. Try to print out a variable. Unfortunately, this does not work. Our problems stem

from the fa
t that we forgot to
ompile with debugging symbols. We will
orre
t this

in the next exer
ise.

(gdb) print i

No symbol "i" in
urrent
ontext.

Cornell Center for Advan
ed Computing 3

7. Exit GDB by typing in q at the prompt.

(gdb) q

Debugging symbols

When we
ompile with debugging symbols enabled, the debugger be
omes mu
h more useful,

as it
an
orrelate our sour
e
ode with fun
tions and variables present in memory.

1. Compile the program with debugging symbols and no optimization (-O0, Capital O

followed by number 0). Aggressive optimization will break the
orrelation between

the sour
e
ode and the native ma
hine instru
tions,
ompli
ating the debugging pro-

ess.

$ g

 -g -O0 s
ramble.
 -o s
ramble

2. Run the program, allow it to dump
ore when it segfaults, and load the new
ore �le

into gdb as before.

$./s
ramble "s
ramble me"

Segmentation fault (
ore dumped)

$ gdb s
ramble
ore.28616

Reading symbols from /home1/01871/apb18/profile_debug/s
ramble...done.

[New Thread 30715℄

Reading symbols from /lib64/lib
.so.6...(no debugging symbols found)...done.

Loaded symbols for /lib64/lib
.so.6

Reading symbols from /lib64/ld-linux-x86-64.so.2...(no debugging symbols found)...done.

Loaded symbols for /lib64/ld-linux-x86-64.so.2

Reading symbols from /lib/modules/2.6.32-279.14.1.el6.x86_64/vdso/vdso.so...

Reading symbols from /usr/lib/debug/lib/modules/2.6.32-279.14.1.el6.x86_64/vdso/vdso.so.debug...done.

done.

Loaded symbols for /lib/modules/2.6.32-279.14.1.el6.x86_64/vdso/vdso.so

Core was generated by `./s
ramble s
ramble me'.

Program terminated with signal 11, Segmentation fault.

#0 0x00000000004005b1 in s
ramble (message=0x7fff6e6e6e67 "./s
ramble",

buffer=0x400728 "") at s
ramble.
:9

9 buffer[i℄ = ((message[i℄ + i) % 93) + 33;

Missing separate debuginfos, use: debuginfo-install glib
-2.12-1.80.el6_3.6.x86_64

(gdb)

Mu
h better! Even without doing a ba
k tra
e, we see exa
tly where the
rash o
-

urred, line 9 of s
ramble.

3. Print out some variables to help us �gure out what is going on at line 9. By inspe
ting

i, message, and buffer,
an you �gure out a possible
ause of the
rash?

Cornell Center for Advan
ed Computing 4

(gdb) print i

$1 = 0

(gdb) print buffer

$2 = 0x400728 ""

(gdb) print message

$3 = 0x7fff6e6e6e67 "./s
ramble"

4. We see that message has a valid string, and i has not been in
remented yet, so

it is likely that something is wrong with writing to buffer. As it turns out, we

mistakenly initiated it with an unmodi�able string literal on line 16. Change line 16

from
har *buffer = ""; to
har buffer[16℄; (not an ideal �x, as it opens the

door to di�erent kinds of bugs, but it will �x our segfault). Name the �xed exe
utable

s
ramble fixed. Compile and run. The solution is in s
ramble fixed.
 if you need

it.

$ g

 -g -O0 s
ramble.
 -o s
ramble_fixed

$./s
ramble_fixed "s
ramble me"

OQ9*:*7-82-59I77

It worked! we �xed our bug.

Cornell Center for Advan
ed Computing 5

