

Introduction to CUDA Programming

Steve Lantz Cornell University Center for Advanced Computing

October 30, 2013

Based on materials developed by CAC and TACC

Outline

- Motivation for GPUs and CUDA
- Overview of Heterogeneous Parallel Computing
- TACC Facts: the NVIDIA Tesla K20 GPUs on Stampede
- Structure of CUDA Programs
- Threading and the Thread Hierarchy
- Memory Model
- Advanced Performance Tips

Motivation

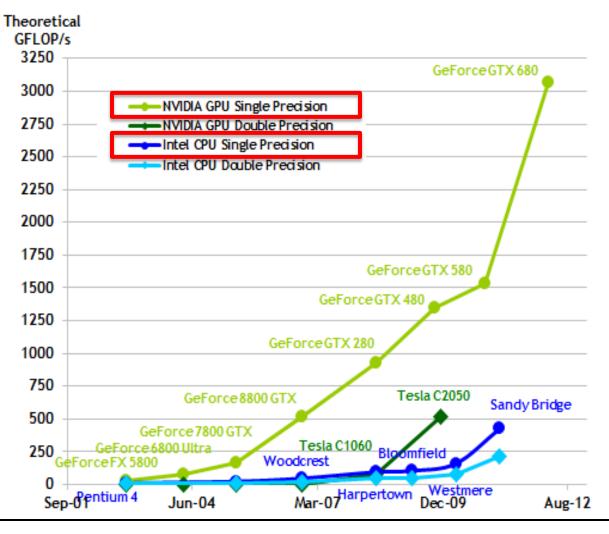
Why Use GPUs?

- Parallel and multithreaded hardware design
- Floating-point computations
 - Graphics rendering
 - General-purpose computing as well
- Energy efficiency
 - More FLOP/s per watt than CPUs
- MIC vs. GPU
 - Comparable performance
 - Different programming models

Motivation

Cornell University Center for Advanced Computing

Peak Performance Comparison



Motivation

Cornell University Center for Advanced Computing

What is CUDA?

- Compute Unified Device Architecture
 - Many-core, shared-memory, multithreaded programming model
 - An Application Programming Interface (API)
 - General-purpose computing on GPUs (GPGPU)
- Multi-core vs. Many-core
 - Multi-core Small number of sophisticated cores (=CPUs)
 - Many-core Large number of weaker cores (=GPU)

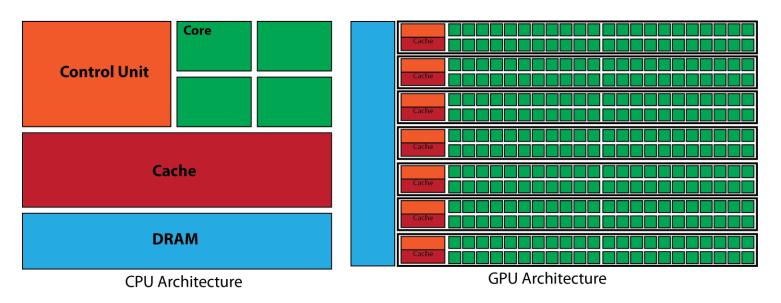
Motivation

Why CUDA?

- Advantages
 - High-level, C/C++/Fortran language extensions
 - Scalability
 - Thread-level abstractions
 - Runtime library
 - <u>Thrust</u> parallel algorithm library
- Limitations
 - Not vendor-neutral: NVIDIA CUDA-enabled GPUs only
 - Alternative: <u>OpenCL</u>

This presentation will be in C

Overview Heterogeneous Parallel Computing



- CPU: Fast serial processing
 - Large on-chip caches
 - Minimal read/write latency
 - Sophisticated logic control

- GPU: High parallel throughput
 - Large numbers of cores
 - High memory bandwidth

Overview Different Designs, Different Purposes

	Intel Sandy Bridge E5 - 2680	NVIDIA Tesla K20
Processing Units	8	13 SMs, 192 cores each, 2496 cores total
Clock Speed (GHz)	2.7	0.706
Maximum Hardware Threads	8 cores, 1 thread each (not 2: hyperthreading is off) = 8 threads with SIMD units	13 SMs, 192 cores each, all with 32-way SIMT = 79872 threads
Memory Bandwidth	51.6 GB/s	205 GB/s
L1 Cache Size	64 KB/core	64 KB/SMs
L2 Cache Size	256 KB/core	768 KB, shared
L3 Cache Size	20MB	N/A M = Stream Multiprocessor

Overview

Cornell University Center for Advanced Computing

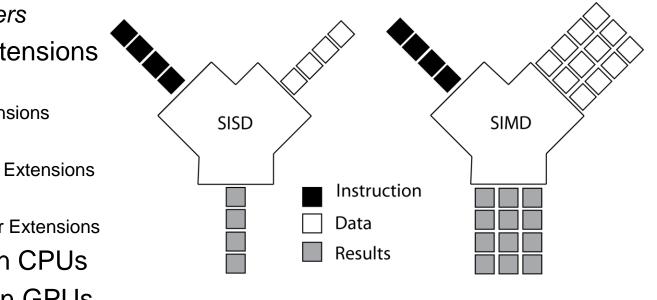
Alphabet Soup

- **GPU G**raphics **P**rocessing **U**nit
- **GPGPU G**eneral-**P**urpose computing on **GPU**s
- CUDA Compute Unified Device Architecture (NVIDIA)
- Multi-core A processor chip with 2 or more CPUs
- *Many-core* A processor chip with 10s to 100s of "CPUs"
- SM Stream Multiprocessor
- SIMD Single Instruction Multiple Data
 - **SIMT Single Instruction Multiple Threads**
 - = SIMD-style multithreading on the GPU

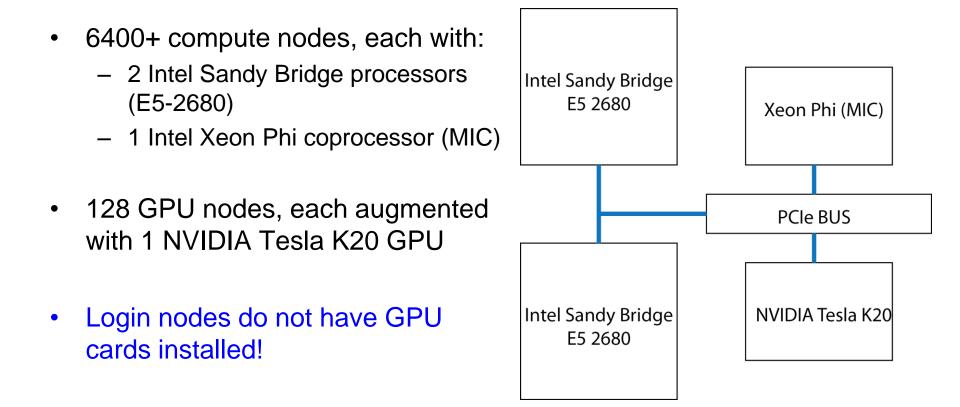
Overview

SIMD

- SISD: Single Instruction Single Data
- SIMD: Single Instruction Multiple Data
 - Example: a vector instruction performs the same operation on multiple data simultaneously
 - Intel and AMD extended their instruction sets to provide operations on vector registers
- Intel's SIMD extensions
 - MMX
 Multimedia eXtensions
 - SSE
 Streaming SIMD Extensions
 - AVX
 Advanced Vector Extensions
- SIMD matters in CPUs
- It also matters in GPUs



TACC FactsGPUs on Stampede



TACC FactsCUDA on Stampede

To run your CUDA application on one or more Stampede GPUs:

- Load CUDA software using the *module* utility
- Compile your code using the NVIDIA *nvcc* compiler
 Acts like a wrapper, hiding the intrinsic compilation details for GPU code
- Submit your job to a GPU queue

TACC FactsLab 1: Querying the Device

1. Extract the lab files to your home directory

\$ cd \$HOME
\$ tar xvf ~tg459572/LABS/Intro_CUDA.tar

2. Load the CUDA software

\$ module load cuda

TACC Facts Lab 1: Querying the Device

3. Go to lab 1 directory, *devicequery*

\$ cd Intro_CUDA/devicequery

- There are 2 files:
 - Source code: *devicequery.cu*
 - Batch script: *batch.sh*
- 4. Use NVIDIA *nvcc* compiler, to compile the source code

\$ nvcc -arch=sm_30 devicequery.cu -o devicequery

TACC FactsLab 1: Querying the Device

- 5. Job submission:
 - Running 1 task on 1 node: #SBATCH -n 1
 - GPU development queue: #SBATCH -p gpudev

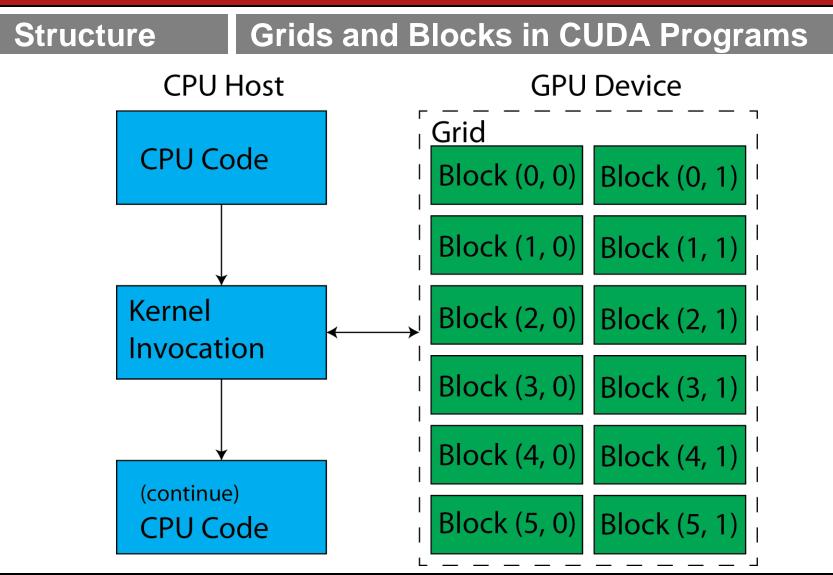
\$ sbatch batch.sh
\$ more gpu_query.o[job ID]

Queue Name	Time Limit	Max Nodes	Description
gpu	24 hrs	32	GPU main queue
gpudev	4 hrs	4	GPU development nodes
vis	8 hrs	32	GPU nodes + VNC service
visdev	4 hrs	4	GPU + VNC development

TACC Facts Lab 1: Querying the Device

CUDA Device Query... There are 1 CUDA devices.

CUDA Device #0	
Major revision number:	3
Minor revision number:	5
Name:	Tesla K20m
Total global memory:	5032706048
Total shared memory per block:	49152
Total registers per block:	65536
Warp size:	32
Maximum memory pitch:	2147483647
Maximum threads per block:	1024
Maximum dimension 0 of block:	1024
Maximum dimension 1 of block:	1024
Maximum dimension 2 of block:	64
Maximum dimension 0 of grid:	2147483647
Maximum dimension 1 of grid:	65535
Maximum dimension 2 of grid:	
Clock rate:	705500
Total constant memory:	65536
Texture alignment:	512
Concurrent copy and execution:	Yes
Number of multiprocessors:	13
Kernel execution timeout:	No

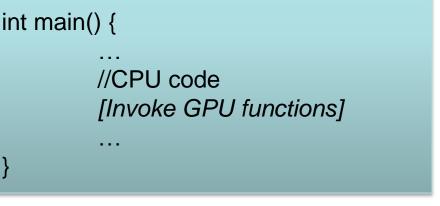


Host and Kernel Codes

Host Code

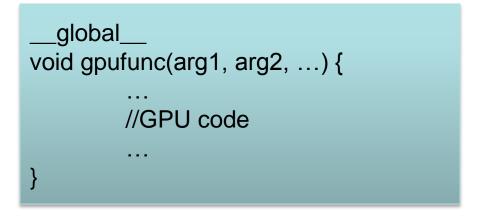
Structure

- Your CPU code
- Takes care of:
 - Device memory
 - Kernel invocation



Kernel Code

- Your GPU code
- Executed on the device
- <u>global</u> qualifier
 - Must have return type void



Structure

Type Qualifiers

- Function Type Qualifiers in CUDA

 - Callable from the host only
 - Executed on the device
 - void return type

__device___

- Executed on the device only
- Callable from the device only

__host__

- Executed on the host only
- Callable from the host only
- Equivalent to declaring a function without any qualifier
- There are variable type qualifiers available as well
- Refer to the <u>NVIDIA documentation</u> for details

Structure

Cornell University Center for Advanced Computing

Invoking a Kernel

• Kernel is invoked from the host

int main	() {
	 //Kernel Invocation gpufunc<< <gridconfig,blkconfig>>>(arguments) </gridconfig,blkconfig>
}	

- Calling a kernel uses familiar syntax (function/subroutine call) augmented by Chevron syntax
- The Chevron syntax (<<<...>>>) configures the kernel
 - First argument: How many blocks in a grid
 - Second argument: How many threads in a block

Thread Hierarchy

Thread

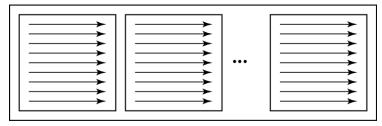
Threading

- Basic execution unit
- Block
 - Thread group assigned to an SM*
 - Independent
 - Threads within a block can:
 - Synchronize
 - Share data
 - Communicate
- Grid
 - All the blocks invoked by a kernel

Block
\longrightarrow
\longrightarrow
→
→
→
\longrightarrow
→
\longrightarrow
→

Thread

Grid



*Max 1024 threads per block (K20)

Threading

Cornell University Center for Advanced Computing

Index Keywords

- Threads and blocks have unique IDs
 - Thread: threadIdx
 - Block: *blockldx*
- threadIdx can have maximum 3 dimensions
 - threadIdx.x, threadIdx.y, and threadIdx.z
- *blockldx* can have maximum 2 dimensions
 - blockldx.x and blockldx.y
- Why multiple dimensions?
 - Programmer's convenience
 - Helps to think about working with a 2D array

Threading

Parallelism

Types of parallelism:

- Thread-level Task Parallelism
 - Every thread, or group of threads, executes a different instruction
 - Not ideal because of thread divergence
- Block-level Task Parallelism
 - Different blocks perform different tasks
 - Multiple kernels are invoked to start the tasks
- Data Parallelism
 - Memory is shared across threads and blocks

Threading

Warp

Threads in a block are bundled into small groups of *warps*

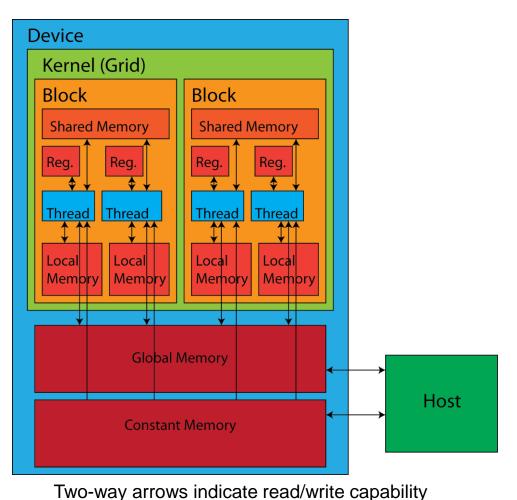
- 1 warp = 32 Threads with consecutive threadIdx values
 - [0..31] form the first warp
 - [32...63] form the second warp, etc.
- A full warp is mapped to one SIMD unit
 - Single Instruction Multiple Threads, SIMT
- Therefore, threads in a warp cannot diverge
 - Execution is serialized to prevent divergence
 - For example, in an *if-then-else* construct:
 - 1. All threads execute *then* affects only threads where condition is true
 - 2. All threads execute *else* affects only threads where condition is false

Memory Model

Kernel

Memory

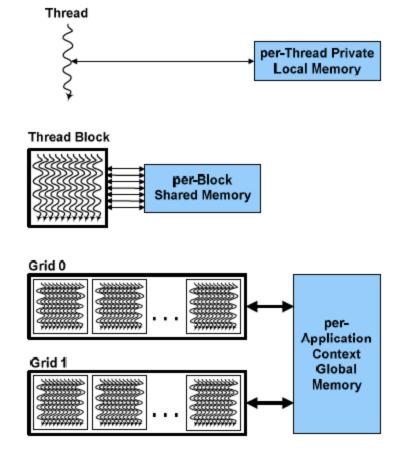
- Per-device global memory
- Block
 - Per-block shared memory
- Thread
 - Per-thread local memory
 - Per-thread register
- CPU and GPU do not share memory



Memory

Memory Hierarchy

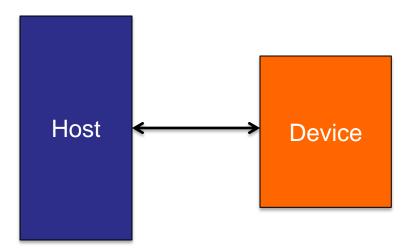
- Per-thread local memory
 - Private storage for local variables
 - Fastest
 - Lifetime: thread
- Per-block shared memory
 - Shared within a block
 - 48kB, fast
 - Lifetime: kernel
 - ___shared___ qualifier
- Per-device global memory
 - Shared
 - 5GB, Slowest
 - Lifetime: application

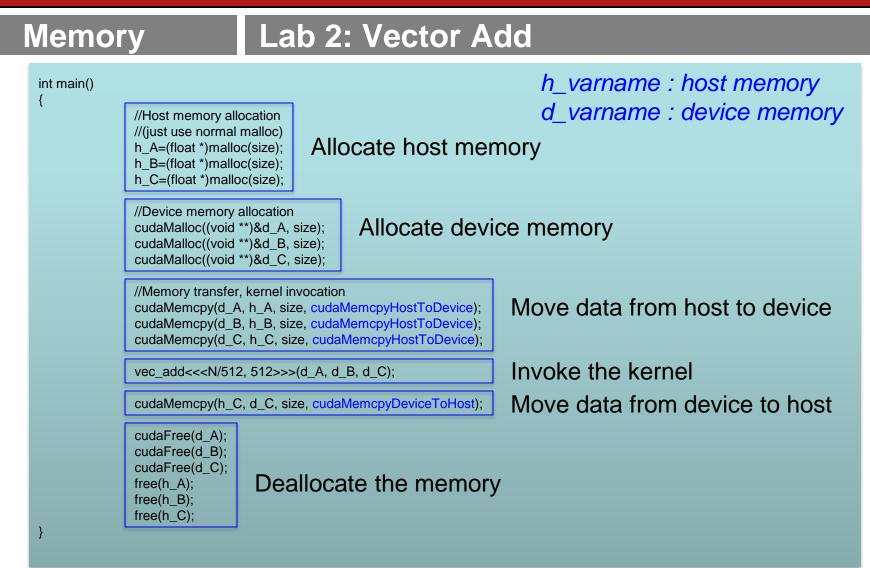


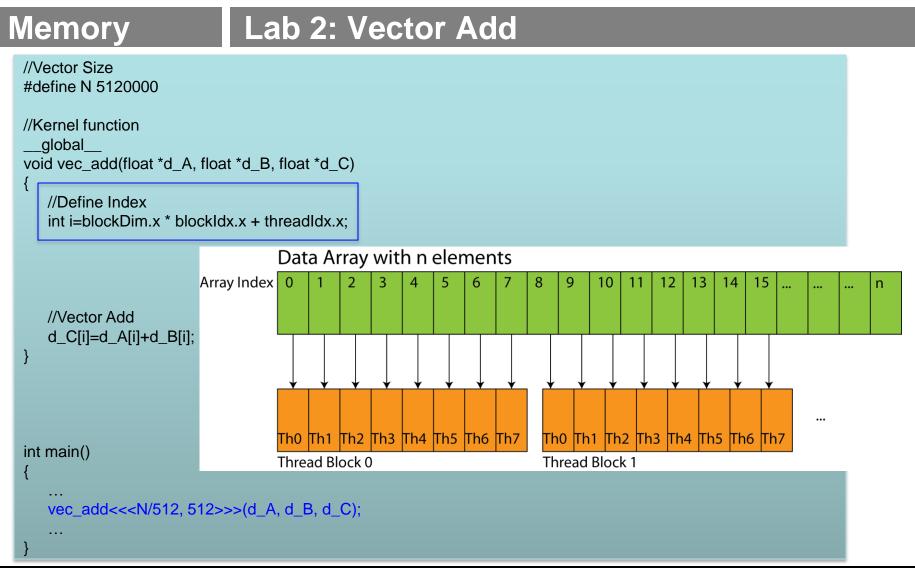
Memory

Memory Transfer

- Allocate device memory
 - cudaMalloc()
- Memory transfer between host and device
 - cudaMemcpy()
- Deallocate memory
 - cudaFree()







Memory

Cornell University Center for Advanced Computing

Lab 2: Vector Add

\$ cd \$HOME/Intro_CUDA/vectoradd \$ nvcc -arch=sm_30 vectoradd.cu -o vectoradd \$ sbatch batch.sh

- Things to try on your own (after the talk):
 - Time the performance using a different vector length
 - Time the performance using a different block size
- Timing tool:
 - /usr/bin/time –p <executable>
 - CUDA also provides a better timing tool, see <u>NVIDIA Documentation</u>

Advanced

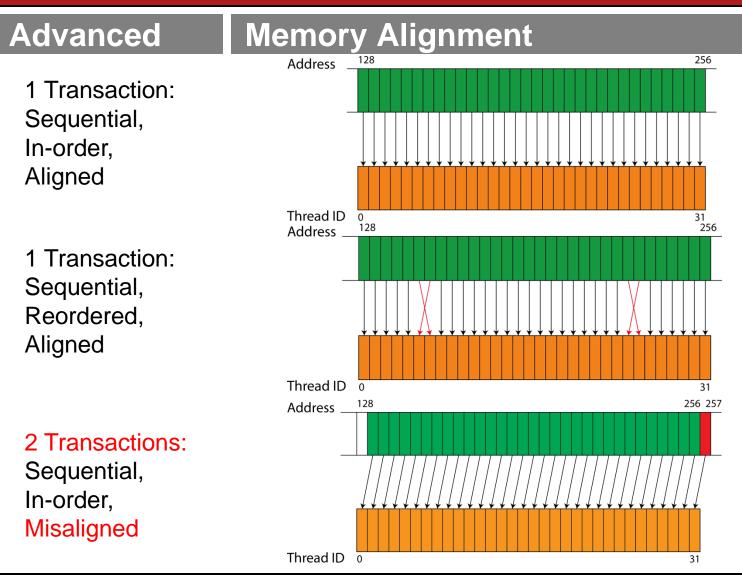
Cornell University Center for Advanced Computing

Performance Tips

- Minimize execution divergence
 - Thread divergence serializes the execution
- Maximize on-chip memory (per-block shared, and per-thread)
 - Global memory is slow (~200GB/s)
- Optimize memory access
 - Coalesced memory access

Advanced Coalesced Memory Access

- What is *coalesced memory access?*
 - Combine all memory transactions into a single warp access
 - On the NVIDIA Tesla K20: 32 threads * 4-byte word = 128 bytes
- What are the requirements?
 - Memory alignment
 - Sequential memory access
 - Dense memory access



Advanced

Performance Topics

- Consider the following code:
 - Is memory access aligned?
 - Is memory access sequential?

//The variable, offset, is a constant
int i=blockDim.x * blockIdx.x + threadIdx.x;
int j=blockDim.x * blockIdx.x + threadIdx.x + offset;
d_B2[i]=d_A2[j];

Summary

- GPU is very good at massively parallel jobs
 - CPU is very good at moderately parallel jobs and serial processing
- GPU threads and memory are linked in a hierarchy
 - A block of threads shares local memory (on the SM)
 - A grid of blocks shares global memory (on the device)
- CUDA provides high-level syntax for assigning work
 - The kernel is the function to be executed on the GPU
 - Thread count and distribution are specified when a kernel is invoked
 - cudaMemcpy commands move data between host and device
- Programming rules must be followed to get the best performance
 - Move data between host and device as little as possible
 - Avoid thread divergence within a warp of threads (32)
 - Preferentially use on-chip (local block) memory
 - Try to perform coalesced memory accesses with warps of threads

Final

Lab 3: Matrix Multiplication

\$ cd \$HOME/Intro_CUDA/matrix_mul
\$ nvcc -arch=sm_30 matrix_mul.cu -o matmul
\$ sbatch batch.sh

- Things to try on your own (after the talk):
 - Compare the performance to the <u>CUDA BLAS</u> matrix multiplication routine
 - Can you improve its performance? Hints:
 - Use on-chip memory
 - Use page-locked memory, see <u>cudaMallocHost()</u>

References

Recommended Reading:

- <u>CUDA Documentation</u>
- <u>Hwu, Wen-Mei; Kirk, David. (2010). Programming Massively Parallel</u> <u>Processors: A Hands-on Approach</u>.