

Cornell Center for Advanced Computing Page 1

OpenMP Exercises

These exercises will introduce you to using OpenMP for parallel
programming. There are four exercises:

1. OMP Hello World
2. Worksharing Loop
3. OMP Functions
4. Hand-coding vs. MKL

To begin, log onto an interactive node of Stampede using the SSH Secure
Shell client or ssh:

SSH Client:

All Programs | ClassFiles | SSH Secure Shell | Secure Shell Client
Host Name: stampede.tacc.utexas.edu

ssh:

 ssh <user-name>@stampede.tacc.utexas.edu

Untar the openmp_lab.tar file (in ~tg459572) into your current directory:

 $ tar xvf ~tg459572/LABS/lab_openmp.tar

Change your working directory to the new lab_openmp directory:

 $ cd lab_openmp

https://www.cac.cornell.edu/Ranger/OpenMP/exercise.aspx#hello
https://www.cac.cornell.edu/Ranger/OpenMP/exercise.aspx#loop
https://www.cac.cornell.edu/Ranger/OpenMP/exercise.aspx#func
https://www.cac.cornell.edu/Ranger/OpenMP/exercise.aspx#mkl

Cornell Center for Advanced Computing Page 2

OMP Hello world

The Hello world example is very short, so for convenience we will run it on
the interactive node where you're logged in. There are other sections of this
lab that will run longer and will involve measuring performance; those will
be done on dedicated nodes through the batch system.

Look at the code in hello.c and/or hello.f90. This code simply reports
OpenMP thread IDs in a parallel region.

Compile hello.c or hello.f90 using the makefiles provided:

$ make hello_c
- or -
$ make hello_f90

Specify 3 threads:

$ export OMP_NUM_THREADS=3

Run:

$./hello_c
- or -
$./hello_f90

Use the makefile to run with 2 to 16 threads:

$ make run_hello_c
- or -
$ make run_hello_f90

Cornell Center for Advanced Computing Page 3

Worksharing Loop

Look at the code in file daxpy.f90. The nested loop repeats a simple
DAXPY type of operation (double-precision ax+y, scalar times vector plus
vector). It is repeated ten times in order to gather statistics on performance.
Parameter N determines the size of the vector: N=48*1024*1024 is the
default.

Compile and run daxpy.f90:

$ make daxpy
$ export OMP_NUM_THREADS=3
$./daxpy

A more detailed comparison will be done in a later section.

Cornell Center for Advanced Computing Page 4

OMP Functions
Look at the code in work.f90. Threads perform some work in a subroutine
called pwork. The timer returns wall-clock time.

Compile work.f90 and run it with one set of threads to verify that it built
properly:

$ make work
$ export OMP_NUM_THREADS=1
$./work
wall-clock time =

Now look at work_serial.f90. We no longer use omp_lib, and numeric
values are substituted for the calls to OMP_ functions. The OpenMP
directives are ignored because the code is not compiled with OpenMP.

Compile and run work_serial.f90:

$ make work_serial
$./work_serial
wall-clock time =

As expected, this code runs with nearly the same speed as the work.f90
code with 1 thread. The overhead due to OpenMP is minimal in this case,
because all threads are forked at the beginning and the parallel region
contains all the work.

Is the overhead worth it when running on multiple threads? Run work
again, using three threads:

$ export OMP_NUM_THREADS=3
$./work
wall-clock time =

Ideally, you saw that the serial time was a little faster than parallel with one
thread, and that the run with three threads had overhead, but overall
showed good speedup in spite of the overhead. Seeing good results is
unlikely on a shared login node. Run these again on a dedicated node
using the batch system (as shown in the Environment talk) to see
meaningful results. (Optional)

Cornell Center for Advanced Computing Page 5

Hand-coding vs. MKL

Look at the code in file daxpy2.f90. The nested loop performs a DAXPY
operation for each outer loop. The DAXPY routine comes from the Intel
MKL library, which is already parallelized with OpenMP (!). All you have to
do is set the value of OMP_NUM_THREADS. Compare the performance
to what you saw in the earlier exercise using the hand-coded OpenMP
version of DAXPY.

Compile and run daxpy2.f90, using 3 threads:

$ make daxpy2
$ export OMP_NUM_THREADS=3
$./daxpy2

Next, prepare to run a batch job. Edit the file job to put the account
number, TG-TRA120006, after the -A flag:

$ vi job

Submit the batch job; this job makes more detailed comparisons on a
dedicated node:

$ sbatch job

Check on your job status:

$ showq -u

Examine your output file:

 $ cat myOMP.o[Job ID]

Note 1: the number of OpenMP threads can exceed the number of physical

cores.

Note 2: the makefile has additional various interactive run_ and plot_

options; the run options can be done in batch, and the plot_ options can be

done interactively.

