
Linda Woodard

woodard@cac.cornell.edu

Cornell CAC

Optimization and Scalability

Workshop: Parallel Computing on Stampede

 October 30, 2013

Putting Performance into Design and Development

…this talk is about the principles and

practices during various stages of

code development that lead to better

performance on a per-core basis

10/29/2013 www.cac.cornell.edu 2

MODEL ALGORITHM
IMPLEMEN-

TATION
COMPILATION

RUNTIME

ENVIRONMENT

PARALLELISM,

SCALABILITY

DATA LOCALITY,

LIBRARIES

COMPILER

OPTIONS

DIAGNOSTICS

AND TUNING

Starting with

how to design

for parallelism

and scalability…

Planning for Parallel

• Consider how your model might be expressed as an algorithm that

naturally splits into many concurrent tasks

• Consider alternative algorithms that, even though less efficient for

small numbers of processors, scale better so that they become more

efficient for large numbers of processors

• Start asking these kinds of questions during the first stages of

design, before the top level of the code is constructed

• Reserve matters of technique, such as whether to use OpenMP or

MPI, for the implementation phase

10/29/2013 www.cac.cornell.edu 3

Scalable Algorithms

• Generally the choice of algorithm is what has the biggest impact on

parallel scalability.

• An efficient and scalable algorithm typically has the following

characteristics:

– The work can be separated into numerous tasks that proceed almost

totally independently of one another

– Communication between the tasks is infrequent or unnecessary

– Lots of computation takes place before messaging or I/O occurs

– There is little or no need for tasks to communicate globally

– There are good reasons to initiate as many tasks as possible

– Tasks retain all the above properties as their numbers grow

10/29/2013 www.cac.cornell.edu 4

What Is Scalability?

• Ideal is to get N times more work done on N processors

• Strong scaling: compute a fixed-size problem N times faster

– speedup S = T1 / TN; linear speedup occurs when S = N

– Can’t achieve it due to Amdahl’s Law (no speedup for serial parts)

• Weak scaling: compute a problem N times bigger in the same amount

of time

– speedup depends on the amount of serial work remaining constant or

increasing slowly as the size of the problem grows

– Assumes amount of communication among processors also remains

constant or grows slowly

10/29/2013 www.cac.cornell.edu 5

Capability vs. Capacity

• HPC jobs can be divided into two categories, capability runs and

capacity runs

– A capability run occupies nearly all the resources of the machine for a

single job

– Capacity runs occur when many smaller jobs are using the machine

simultaneously

• Capability runs are typically achieved via weak scaling

– Strong scaling usually applies only over some finite range of N and

breaks down when N becomes huge because of parallel overhead

– A trivially parallelizable code is an extreme case of weak scaling;

however, replicating such a code really just fills up the machine with a

bunch of capacity runs instead of one big capability run

10/29/2013 www.cac.cornell.edu 6

Predicting Scalability

• Consider the time to compute a fixed workload due to N workers:

• The number and size of messages might themselves depend on N

(unless all travel in parallel!), suggesting a model of the form:

• Latency and bandwidth depend on hardware and are measured

through benchmarks; other constants depend partly on the application

10/29/2013 www.cac.cornell.edu 7

total time = computation + message initiation + message bulk

computation = parallel workload/N + serial time (Amdahl’s Law)

message initiation = number of messages * latency

message bulk = size of all messages / bandwidth

total time = parallel workload/N + serial time

 + k0 * N^a * latency + k1 * N^b / bandwidth

The Shape of Speedup

Modeled speedup (purple) could be worse than Amdahl’s Law (blue)

due to the overhead of message passing. Look for better strategies.

10/29/2013 www.cac.cornell.edu 8

How do you get to Petascale with MPI?

• Favor local communications over global

– Nearest-neighbor is fine

– All-to-all can be trouble

• Avoid frequent synchronization

– Load imbalances show up as synchronization penalties

– Even random, brief system interruptions (“jitter” or “noise”) can

effectively cause load imbalances

– Balancing must become ever more precise as the number of processes

increases

10/29/2013 www.cac.cornell.edu 9

Putting Performance into Development: Libraries

10/29/2013 www.cac.cornell.edu 10

MODEL ALGORITHM
IMPLEMEN-

TATION
COMPILATION

RUNTIME

ENVIRONMENT

DATA LOCALITY,

LIBRARIES

COMPILER

OPTIONS

DIAGNOSTICS

AND TUNING

PARALLELISM,

SCALABILITY

…this talk is about the principles and

practices during various stages of

code development that lead to better

performance on a per-core basis

Starting with

how to design

for parallelism

and scalability…

What Matters Most in Per-Core Performance?

Good memory locality!

• Code accesses contiguous, stride-one memory addresses

– data always arrive in cache lines which include neighbors

– loops are vectorizable via SSE, AVX

• Code emphasizes cache reuse

– when multiple operations on a data item are grouped together, the item

remains in cache, where access is much faster than from RAM

• Align data on important boundaries

– items won’t straddle boundaries, so access is more efficient

• Locality is even more important for coprocessors than it is for CPUs

10/29/2013 www.cac.cornell.edu 11

Understanding The Memory Hierarchy

10/29/2013 www.cac.cornell.edu 12

Functional Units

L1 Cache

Registers

Local Memory

L2 Cache

L2 Cache 1 MB

Local Memory 2 GB

L1 Cache 32/32 KB

Relative Memory Sizes

L3 Cache Off Die

~25 GB/s

~50 GB/s

Relative Memory Bandwidths

~12 GB/s

~8 GB/s

Processor

~5 CP

Latency

~15 CP

~300 CP

Computer Architecture Matters

• Compiled code should exploit special instructions & hardware

• Sandy Bridge CPUs have 64-bit addressing (Intel64 or x86_64)

• Intel SSE and AVX extensions access special registers & operations

– 128-bit SSE registers can hold 4 floats/ints or 2 doubles simultaneously

– 256-bit AVX registers were introduced with “Sandy Bridge”

– 512-bit SIMD registers are present on the Intel MICs

– Within these vector registers, vector operations can be applied

– Operations are also pipelined (e.g., load > multiply > add > store)

– Therefore, multiple results can be produced every clock cycle

10/29/2013 www.cac.cornell.edu 13

Understanding SIMD and Micro-Parallelism

• For “vectorizable” loops with independent iterations, SSE and AVX

instructions can be employed…

10/29/2013 www.cac.cornell.edu 14

SIMD = Single Instruction, Multiple Data

SSE = Streaming SIMD Extensions

AVX = Advanced Vector Extensions

Instructions operate on multiple

arguments simultaneously, in parallel

Execution Units
D

a
ta

 P
o

o
l

Instructions

SIMD

SSE

EU

SSE

EU

SSE

EU

SSE

EU

Performance Libraries

• Optimized for specific architectures (chip + platform + system)

– Take into account details of the memory hierarchy (e.g., cache sizes)

– Exploit pertinent vector (SIMD) instructions

• Offered by different vendors for their hardware products

– Intel Math Kernel Library (MKL)

– AMD Core Math Library (ACML)

– IBM ESSL/PESSL, Cray libsci, SGI SCSL...

• Usually far superior to hand-coded routines for “hot spots”

– Writing your own library routines by hand is like re-inventing the wheel

– Numerical Recipes books are NOT a source of optimized code:

performance libraries can run 100x faster

10/29/2013 www.cac.cornell.edu 15

HPC Software on Stampede, from Apps to Libs

10/29/2013 www.cac.cornell.edu 16

TAU

PAPI

…

AMBER

NAMD

GROMACS

GAMESS

VASP

…

MKL

GSL

FFTW(2/3)

NumPy

…

PETSc

ARPACK

Hypre

ScaLAPACK

SLEPc

METIS

ParMETIS

SPRNG

…

HDF5

PHDF5

NetCDF

pNetCDF

…

Applications Parallel Libs Math Libs Input/Output Diagnostics

Intel MKL 13 (Math Kernel Library)

• Accompanies the Intel 13 compilers

• Optimized by Intel for all current Intel architectures

• Supports Fortran, C, C++ interfaces

• Includes functions in the following areas:

– Basic Linear Algebra Subroutines, for BLAS levels 1-3

– LAPACK, for linear solvers and eigensystems analysis

– Fast Fourier Transform (FFT) routines

– Transcendental functions

– Vector Math Library (VML) for vectorized transcendentals

• Incorporates shared- and distributed-memory parallelism

– OpenMP multithreading is built in, just set OMP_NUM_THREADS > 1

– Link with BLACS to provide optimized ScaLAPACK

10/29/2013 www.cac.cornell.edu 17

Using Intel MKL on Stampede

• On login, MKL and its environment variables are loaded by default

– They come with the Intel compiler

– If you switch to a different compiler, you must re-load MKL explicitly

module swap intel gcc

module load mkl

module help mkl

• Compile and link for C/C++ or Fortran: dynamic linking-no Threads
icc myprog.c -mkl=sequential

ifort myprog.f90 -mkl=sequential

• Compile and link for C/C++ or Fortran: dynamic linking-threads
icc myprog.c -mkl=parallel

ifort myprog.f90 -mkl=parallel

 10/29/2013 www.cac.cornell.edu 18

FFTW and ATLAS

• These two libraries rely on “cache-oblivious algorithms”

– Resulting lib is self-adapted to the hardware cache size, etc.

• FFTW, the Fastest Fourier Transform in the West

– Cooley-Tukey with automatic performance adaptation

– Prime Factor algorithm, best with small primes like (2, 3, 5, and 7)

– The FFTW interface can also be linked against MKL

• ATLAS, the Automatically Tuned Linear Algebra Software

– BLAS plus some LAPACK

– Not pre-built for Stampede (would need to be complied from source)

10/29/2013 www.cac.cornell.edu 19

GSL, the GNU Scientific Library

• Special Functions

• Vectors and Matrices

• Permutations

• Sorting

• Linear Algebra/BLAS Support

• Eigensystems

• Fast Fourier Transforms

• Quadrature

• Random Numbers

• Quasi-Random Sequences

• Random Distributions

10/29/2013 www.cac.cornell.edu 20

• Statistics, Histograms

• N-Tuples

• Monte Carlo Integration

• Simulated Annealing

• Differential Equations

• Interpolation

• Numerical Differentiation

• Chebyshev Approximation

• Root-Finding

• Minimization

• Least-Squares Fitting

Putting Performance into Development: Compilers

10/29/2013 www.cac.cornell.edu 21

MODEL ALGORITHM
IMPLEMEN-

TATION
COMPILATION

RUNTIME

ENVIRONMENT

DATA LOCALITY,

LIBRARIES

COMPILER

OPTIONS

DIAGNOSTICS

AND TUNING

PARALLELISM,

SCALABILITY

…this talk is about the principles and

practices during various stages of

code development that lead to better

performance on a per-core basis

Starting with

how to design

for parallelism

and scalability…

Compiler Options

10/29/2013 www.cac.cornell.edu 22

• There are three important categories:

– Optimization level

– Architecture-related options affecting performance

– Interprocedural optimization

• Generally you will want to supply at least one option from each category

Let the Compiler Do the Optimization

• Compilers can do sophisticated optimization

– Realize that the compiler will follow your lead

– Structure the code so it’s easy for the compiler to do the right thing (and

for other humans to understand it)

– Favor simpler language constructs (pointers and OO code won’t help)

• Use the latest compiler and optimization options

– Check available compiler options

 <compiler_command> --help

– The Stampede User Guide (https://portal.xsede.org/web/xup/tacc-

stampede) lists compiler options affecting performance in Table 5.6

– Experiment with combinations of options

10/29/2013 www.cac.cornell.edu 23

https://portal.xsede.org/web/xup/tacc-stampede
https://portal.xsede.org/web/xup/tacc-stampede
https://portal.xsede.org/web/xup/tacc-stampede
https://portal.xsede.org/web/xup/tacc-stampede

Basic Optimization Level: -On

• -O0 = no optimization: disable all optimization for fast compilation

• -O1 = compact optimization: optimize for speed, but disable

 optimizations which increase code size

• -O2 = default optimization

• -O3 = aggressive optimization: rearrange code more freely, e.g.,

 perform scalar replacements, loop transformations, etc.

• Specifying -O3 is not always worth it…

– Can make compilation more time and memory intensive

– Might be only marginally effective

– Carries a risk of changing code semantics and results

– Sometimes even breaks codes!

10/29/2013 www.cac.cornell.edu 24

-O2 vs. -O3

• Operations performed at default optimization level, -O2

– Instruction rescheduling

– Copy propagation

– Software pipelining

– Common sub-expression elimination

– Prefetching

– Some loop transformations

• Operations performed at the higher optimization level -O3

– Aggressive prefetching

– More loop transformations

10/29/2013 www.cac.cornell.edu 25

Architecture: the Compiler Should Know the Chip

• SSE level and other capabilities depend on the exact chip

• Taking an Intel “Sandy Bridge” from Stampede as an example…

– Supports SSE, SSE2, SSE4_1, SSE4_2, AVX

– Supports Intel’s SSSE3 = Supplemental SSE3, not the same as AMD’s

– Does not support AMD’s SSE5

• In Linux, a standard file shows features of your system’s architecture

– Do this: cat /proc/cpuinfo {shows cpu information}

– If you want to see even more, do a Web search on the model number

• This information can be used during compilation…

10/29/2013 www.cac.cornell.edu 26

Compiler Options Affecting Performance

With Intel 13 compilers on Stampede:

• -xhost enables the highest level of vectorization supported on the

processor on which you compile

• -opt-prefetch enables data prefetching

• -fast sounds pretty good, but it is not recommended!

• To optimize I/O on Stampede: -assume buffered_io

• To optimize floating-point math: -fp=model fast[=1|2]

10/29/2013 www.cac.cornell.edu 27

Interprocedural Optimization (IP)

• The Intel compilers, like most, can do IP (option -ip)

– Limits optimizations to within individual files

– Produces line numbers for debugging

• The Intel -ipo compiler option does more

– Enables multi-file IP optimizations (between files)

– Places additional information in each object file

– IP among ALL objects is performed during the load phase,

– Can take much more time, as code is recompiled during linking

– It is important to include options in link command (-ipo -O3 -xhost, etc.)

– Easiest way to ensure correct linking is to link using mpif90 or mpicc

– All this works because the special Intel xild loader replaces ld

– When archiving in a library, you must use xiar, instead of ar

10/29/2013 www.cac.cornell.edu 28

Other Intel Compiler Options

• -g generate debugging information, symbol table

• -vec_report# {# = 0-5} turn on vector diagnostic reporting –

 make sure your innermost loops are vectorized

• -C (or -check) enable extensive runtime error checking

• -CB -CU check bounds, check uninitialized variables

• -convert kw specify format for binary I/O by keyword {kw =

 big_endian, cray, ibm, little_endian, native, vaxd}

• -openmp multithread based on OpenMP directives

• -openmp_report# {# = 0-2} turn on OpenMP diagnostic reporting

• Do NOT USE:

– -static load libs statically at runtime

– -fast includes -static and -no-prec-div

10/29/2013 www.cac.cornell.edu 29

Best Practices for Compilers

• Normal compiling for Stampede

– Intel 13:

 icc/ifort -O3 -xhost -ipo prog.c/cc/f90

– GNU 4.4 (not recommended, not supported):

 gcc -O3 -march=corei7-avx -mtune=corei7-avx -fwhole-program -combine prog.c

– GNU (if absolutely necessary) mixed with icc-compiled subprograms:

 mpicc -O3 -xhost -cc=gcc -L$ICC_LIB -lirc prog.c subprog_icc.o

• -O2 is the default; compile with -O0 if this breaks (very rare)

• Debug options should not be used in a production compilation

– Compile like this only for debugging: ifort -O2 -g -CB test.c

10/29/2013 www.cac.cornell.edu 30

Lab: Compiler-Optimized Naïve Code vs. Libraries

• Challenge: how fast can we do a linear solve via LU decomposition?

• Naïve code is copied from Numerical Recipes and two alternative codes

are based on calls to GSL and LAPACK

– LAPACK references can be resolved by linking to an optimized library like ATLAS or MKL

• Compare the timings of these codes when compiled with different

compilers and optimizations

– Compile the codes with different flags, including “-g”, “-O2”, “-O3”

– Submit a job to see how fast the codes run

– Recompile with new flags and try again

– Can even try to use MKL’s built-in OpenMP multithreading

• Source is in ~tg459572/LABS/ludecomp.tgz

10/29/2013 www.cac.cornell.edu 31

Putting Performance into Development: Tuning

10/29/2013 www.cac.cornell.edu 32

MODEL ALGORITHM
IMPLEMEN-

TATION
COMPILATION

RUNTIME

ENVIRONMENT

DATA LOCALITY,

LIBRARIES

COMPILER

OPTIONS

DIAGNOSTICS

AND TUNING

PARALLELISM,

SCALABILITY

…this talk is about the principles and

practices during various stages of

code development that lead to better

performance on a per-core basis

Starting with

how to design

for parallelism

and scalability…

In-Depth vs. Rough Tuning

In-depth tuning is a long, iterative process:

• Profile code

• Work on most time intensive blocks

• Repeat as long as you can tolerate…

For rough tuning during development:

• Learn about common microarchitectural

features (like SSE)

• Get a sense of how the compiler tries to

optimize instructions, given certain

features

10/29/2013 www.cac.cornell.edu 33

REVIEW

PROFILE

TUNE MOST

TIME-INTENSIVE

SECTION

DECENT

PERFORMANCE

GAIN? YES NO

MORE

EFFORT ON

THIS?

STOP

CHECK

IMPROVEMENT
RE-

EVALUATE

YES

NO

First Rule of Thumb: Minimize Your Stride

• Minimize stride length

– It increases cache efficiency

– It sets up hardware and software prefetching

– Stride lengths of large powers of two are typically the worst case,

leading to cache and translation look-aside buffer (TLB) misses due to

limited cache associativity

• Strive for stride-1 vectorizable loops

– Can be sent to a SIMD unit

– Can be unrolled and pipelined

– Can be processed by SSE and AVX instructions

– Can be parallelized through OpenMP directives

10/29/2013 www.cac.cornell.edu 34

The Penalty of Stride > 1

• For large and small

arrays, always try to

arrange data so that

structures are arrays

with a unit (1) stride.

10/29/2013 www.cac.cornell.edu 35

Bandwidth Performance Code:

do i = 1,10000000,istride

sum = sum + data(i)

end do

Performance of Strided Access

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8

Stride

E
ff

e
c

ti
v

e
 B

a
n

d
w

id
th

(M
B

/s
)

Stride 1 in Fortran and C

• The following snippets of code illustrate the correct way to access

contiguous elements of a matrix, i.e., stride 1 in Fortran and C

10/29/2013 www.cac.cornell.edu 36

Fortran Example:

real*8 :: a(m,n), b(m,n), c(m,n)

...

do i=1,n

 do j=1,m

 a(j,i) = b(j,i) + c(j,i)

 end do

end do

C Example:

double a[m][n], b[m][n], c[m][n];

...

for (i=0; i < m; i++)

{

 for (j=0; j < n; j++)

 a[i][j] = b[i][j] + c[i][j];

}

Column Major Row Major

Second Rule of Thumb: Inline Your Functions

• What does inlining achieve?

– It replaces a function call with a full copy of that function’s instructions

– It avoids putting variables on the stack, jumping, etc.

• When is inlining important?

– When the function is a hot spot

– When function call overhead is comparable to time spent in the routine

– When it can benefit from Inter-Procedural Optimization

• As you develop “think inlining”

– The C “inline” keyword provides inlining within source

– Use -ip or -ipo to allow the compiler to inline

10/29/2013 www.cac.cornell.edu 37

integer :: ndim=2, niter=10000000

real*8 :: x(ndim), x0(ndim), r

integer :: i, j

 ...

 do i=1,niter

 ...

 r=dist(x,x0,ndim)

 ...

 end do

 ...

end program

real*8 function dist(x,x0,n)

real*8 :: x0(n), x(n), r

integer :: j,n

r=0.0

do j=1,n

 r=r+(x(j)-x0(j))**2

end do

dist=r

end function

integer:: ndim=2, niter=10000000

real*8 :: x(ndim), x0(ndim), r

integer :: i, j

 ...

 do i=1,niter

 ...

 r=0.0

 do j=1,ndim

 r=r+(x(j)-x0(j))**2

 end do

 ...

 end do

 ...

end program

Example: Procedure Inlining

10/29/2013 www.cac.cornell.edu 38

Trivial function dist called

niter times

function dist has been

inlined inside the i loop

Low-overhead loop j

executes niter times

Tips for Writing Faster Code
• Avoid excessive program modularization (i.e. too many subroutines)

– Write routines that can be inlined

– Use macros and parameters whenever possible

• Minimize the use of pointers

• Avoid casts or type conversions, implicit or explicit

– Conversions involve moving data between different execution units

• Avoid I/O, function calls, branches, and divisions inside loops

– Why pay overhead over and over?

– Move loops into the subroutine, instead of looping the subroutine call

– Structure loops to eliminate conditionals

– Calculate a reciprocal outside the loop and multiply inside

10/29/2013 www.cac.cornell.edu 39

Best Practices from the Stampede User Guide

Additional performance can be obtained with these techniques:

• Memory subsystem tuning

– Blocking/tiling arrays

– Prefetching (creating multiple streams of stride-1)

• Floating-point tuning

– Unrolling small inner loops to hide FP latencies and enable vectorization

– Limiting use of Fortran 90+ array sections (can even compile slowly!)

• I/O tuning

– Consolidating all I/O to and from a few large files in $SCRATCH

– Using direct-access binary files or MPI-IO

– Avoiding I/O to many small files, especially in one directory

– Avoiding frequent open-and-closes (can swamp the metadata server!)

10/29/2013 www.cac.cornell.edu 40

Loop Tiling to Fit Into Cache

10/29/2013 www.cac.cornell.edu 41

Example: matrix-matrix

multiplication

real*8 a(n,n), b(n,n), c(n,n)

do ii=1,n,nb ! Stride by block size

 do jj=1,n,nb

 do kk=1,n,nb

 do i=ii,min(n,ii+nb-1)

 do j=jj,min(n,jj+nb-1)

 do k=kk,min(n,kk+nb-1)

 c(i,j)=c(i,j)+a(i,k)*b(k,j)

nb x nb nb x nb nb x nb nb x nb

Takeaway: all the performance libraries do this, so you don’t have to

Conclusions

• Performance should be considered at every phase of application

development

– Large-scale parallel performance (speedup and scaling) is most

influenced by choice of algorithm

– Per-processor performance is most influenced by the translation of the

high-level API and syntax into machine code (by libraries and compilers)

• Coding style has implications for how well the code ultimately runs

• Optimization that is done for server CPUs (e.g., Intel Sandy Bridge)

also serves well for accelerators and coprocessors (e.g., Intel MIC)

– Relative speed of inter-process communication is even slower on MIC

– MKL is optimized for MIC, too, with automatic offload of MKL calls

– It’s even more important for MIC code to vectorize well

10/29/2013 www.cac.cornell.edu 42

