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Putting Performance into Design and Development 

…this talk is about the principles and 

practices during various stages of 

code development that lead to better 

performance on a per-core basis 
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Planning for Parallel 

• Consider how your model might be expressed as an algorithm that 

naturally splits into many concurrent tasks 

 

• Consider alternative algorithms that, even though less efficient for 

small numbers of processors, scale better so that they become more 

efficient for large numbers of processors 

 

• Start asking these kinds of questions during the first stages of 

design, before the top level of the code is constructed 

 

• Reserve matters of technique, such as whether to use OpenMP or 

MPI, for the implementation phase 
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Scalable Algorithms 

• Generally the choice of algorithm is what has the biggest impact on 

parallel scalability. 

 

• An efficient and scalable algorithm typically has the following 

characteristics: 

– The work can be separated into numerous tasks that proceed almost 

totally independently of one another 

– Communication between the tasks is infrequent or unnecessary  

– Lots of computation takes place before messaging or I/O occurs  

– There is little or no need for tasks to communicate globally 

– There are good reasons to initiate as many tasks as possible 

– Tasks retain all the above properties as their numbers grow 

10/29/2013 www.cac.cornell.edu 4 



What Is Scalability? 

• Ideal is to get N times more work done on N processors 

 

• Strong scaling: compute a fixed-size problem N times faster 

– speedup S = T1 / TN; linear speedup occurs when S = N 

– Can’t achieve it due to Amdahl’s Law (no speedup for serial parts) 

 

• Weak scaling: compute a problem N times bigger in the same amount 

of time 

– speedup depends on the amount of serial work remaining constant or 

increasing slowly as the size of the problem grows 

– Assumes amount of communication among processors also remains 

constant or grows slowly 
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Capability vs. Capacity 

• HPC jobs can be divided into two categories, capability runs and 

capacity runs 

– A capability run occupies nearly all the resources of the machine for a 

single job 

– Capacity runs occur when many smaller jobs are using the machine 

simultaneously 

 

• Capability runs are typically achieved via weak scaling 

– Strong scaling usually applies only over some finite range of N and 

breaks down when N becomes huge because of parallel overhead 

– A trivially parallelizable code is an extreme case of weak scaling; 

however, replicating such a code really just fills up the machine with a 

bunch of capacity runs instead of one big capability run 
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Predicting Scalability 

• Consider the time to compute a fixed workload due to N workers:  

 

 

 

 

• The number and size of messages might themselves depend on N 

(unless all travel in parallel!), suggesting a model of the form: 

 

 

 

• Latency and bandwidth depend on hardware and are measured 

through benchmarks; other constants depend partly on the application 
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total time = computation + message initiation + message bulk 

computation = parallel workload/N + serial time   (Amdahl’s Law) 

message initiation = number of messages * latency 

message bulk = size of all messages / bandwidth 

total time = parallel workload/N + serial time 

           + k0 * N^a * latency + k1 * N^b / bandwidth 



The Shape of Speedup 

Modeled speedup (purple) could be worse than Amdahl’s Law (blue) 

due to the overhead of message passing. Look for better strategies. 
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How do you get to Petascale with MPI? 

• Favor local communications over global 

– Nearest-neighbor is fine 

 

– All-to-all can be trouble 

 

• Avoid frequent synchronization 

– Load imbalances show up as synchronization penalties 

 

– Even random, brief system interruptions (“jitter” or “noise”) can 

effectively cause load imbalances 

 

– Balancing must become ever more precise as the number of processes 

increases 
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Putting Performance into Development: Libraries 
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What Matters Most in Per-Core Performance? 

 
 
Good memory locality!  

• Code accesses contiguous, stride-one memory addresses 

– data always arrive in cache lines which include neighbors 

– loops are vectorizable via SSE, AVX 

 

• Code emphasizes cache reuse 

– when multiple operations on a data item are grouped together, the item 

remains in cache, where access is much faster than from RAM 

 

• Align data on important boundaries  

– items won’t straddle boundaries, so access is more efficient 

 

• Locality is even more important for coprocessors than it is for CPUs 
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Understanding The Memory Hierarchy 
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Functional Units 

L1 Cache 

Registers 

Local Memory 

L2 Cache 

L2 Cache   1 MB 

Local Memory     2 GB 

L1 Cache 32/32 KB 

Relative Memory Sizes 

L3 Cache Off Die 

~25 GB/s 

~50 GB/s 

Relative Memory Bandwidths 

~12 GB/s 

~8 GB/s 

Processor 

~5 CP 

Latency 

~15 CP 

~300 CP 



Computer Architecture Matters 

• Compiled code should exploit special instructions & hardware 

 

• Sandy Bridge CPUs have 64-bit addressing (Intel64 or x86_64) 

 
 

• Intel SSE and AVX extensions access special registers & operations 

– 128-bit SSE registers can hold 4 floats/ints or 2 doubles simultaneously 

– 256-bit AVX registers were introduced with “Sandy Bridge” 

– 512-bit SIMD registers are present on the Intel MICs 

– Within these vector registers, vector operations can be applied 

– Operations are also pipelined (e.g., load > multiply > add > store) 

– Therefore, multiple results can be produced every clock cycle 
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Understanding SIMD and Micro-Parallelism 

• For “vectorizable” loops with independent iterations, SSE and AVX 

instructions can be employed… 

10/29/2013 www.cac.cornell.edu 14 

SIMD = Single Instruction, Multiple Data 
 

SSE = Streaming SIMD Extensions 
 

AVX = Advanced Vector Extensions 

 
 

Instructions operate on multiple 

arguments simultaneously, in parallel 
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Performance Libraries 

• Optimized for specific architectures (chip + platform + system) 

– Take into account details of the memory hierarchy (e.g., cache sizes) 

– Exploit pertinent vector (SIMD) instructions 

 

• Offered by different vendors for their hardware products 

– Intel Math Kernel Library (MKL) 

– AMD Core Math Library (ACML) 

– IBM ESSL/PESSL, Cray libsci, SGI SCSL... 

 

• Usually far superior to hand-coded routines for “hot spots”  

– Writing your own library routines by hand is like re-inventing the wheel 

– Numerical Recipes books are NOT a source of optimized code: 

performance libraries can run 100x faster 
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HPC Software on Stampede, from Apps to Libs 
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TAU 

PAPI 

… 

AMBER 

NAMD 

GROMACS  

 

GAMESS 

VASP 

… 

MKL 

GSL 

 

FFTW(2/3) 

 

NumPy 

… 

PETSc 

 

ARPACK 

Hypre 

ScaLAPACK 

SLEPc 

 

METIS 

ParMETIS 

 

SPRNG 

… 

 

HDF5 

PHDF5 

 

NetCDF 

pNetCDF 

… 

Applications Parallel Libs Math Libs Input/Output Diagnostics 



Intel MKL 13 (Math Kernel Library) 

• Accompanies the Intel 13 compilers 

• Optimized by Intel for all current Intel architectures 

• Supports Fortran, C, C++ interfaces 

• Includes functions in the following areas: 

– Basic Linear Algebra Subroutines, for BLAS levels 1-3  

– LAPACK, for linear solvers and eigensystems analysis 

– Fast Fourier Transform (FFT) routines 

– Transcendental functions 

– Vector Math Library (VML) for vectorized transcendentals 

• Incorporates shared- and distributed-memory parallelism 

–  OpenMP multithreading is built in, just set OMP_NUM_THREADS > 1 

– Link with BLACS to provide optimized ScaLAPACK 
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Using Intel MKL on Stampede 

• On login, MKL and its environment variables are loaded by default 

– They come with the Intel compiler 

– If you switch to a different compiler, you must re-load MKL explicitly 

module swap intel gcc 

module load mkl 

module help mkl 
 

• Compile and link for C/C++ or Fortran: dynamic linking-no Threads 
icc   myprog.c   -mkl=sequential 

ifort myprog.f90 -mkl=sequential 
  

• Compile and link for C/C++ or Fortran: dynamic linking-threads 
icc   myprog.c   -mkl=parallel 

ifort myprog.f90 -mkl=parallel 
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FFTW and ATLAS 

• These two libraries rely on “cache-oblivious algorithms” 

– Resulting lib is self-adapted to the hardware cache size, etc. 

 

• FFTW, the Fastest Fourier Transform in the West 

– Cooley-Tukey with automatic performance adaptation 

– Prime Factor algorithm, best with small primes like (2, 3, 5, and 7) 

– The FFTW interface can also be linked against MKL 

 

• ATLAS, the Automatically Tuned Linear Algebra Software  

– BLAS plus some LAPACK 

– Not pre-built for Stampede (would need to be complied from source) 
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GSL, the GNU Scientific Library 

• Special Functions 

• Vectors and Matrices 

• Permutations 

• Sorting 

• Linear Algebra/BLAS Support 

• Eigensystems 

• Fast Fourier Transforms 

• Quadrature 

• Random Numbers 

• Quasi-Random Sequences 

• Random Distributions 
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• Statistics, Histograms 

• N-Tuples 

• Monte Carlo Integration 

• Simulated Annealing 

• Differential Equations 

• Interpolation 

• Numerical Differentiation 

• Chebyshev Approximation 

• Root-Finding 

• Minimization 

• Least-Squares Fitting 



Putting Performance into Development: Compilers 
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Compiler Options 
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• There are three important categories: 

 

– Optimization level 

 

– Architecture-related options affecting performance 

 

– Interprocedural optimization 

 

 

• Generally you will want to supply at least one option from each category 



Let the Compiler Do the Optimization 

• Compilers can do sophisticated optimization 

– Realize that the compiler will follow your lead 

– Structure the code so it’s easy for the compiler to do the right thing (and 

for other humans to understand it) 

– Favor simpler language constructs (pointers and OO code won’t help) 

 

• Use the latest compiler and optimization options 

– Check available compiler options 

 <compiler_command> --help 
 

– The Stampede User Guide (https://portal.xsede.org/web/xup/tacc-

stampede) lists compiler options affecting performance in Table 5.6 

– Experiment with combinations of options 
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Basic Optimization Level:  -On 

• -O0 = no optimization: disable all optimization for fast compilation 

• -O1 = compact optimization: optimize for speed, but disable      

   optimizations which increase code size 

• -O2 = default optimization 

• -O3 = aggressive optimization: rearrange code more freely, e.g., 

   perform scalar replacements, loop transformations, etc. 

 

• Specifying -O3 is not always worth it… 

– Can make compilation more time and memory intensive 

– Might be only marginally effective 

– Carries a risk of changing code semantics and results 

– Sometimes even breaks codes! 
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-O2 vs. -O3 

• Operations performed at default optimization level, -O2 

– Instruction rescheduling 

– Copy propagation 

– Software pipelining 

– Common sub-expression elimination 

– Prefetching 

– Some loop transformations 

 

• Operations performed at the higher optimization level -O3 

– Aggressive prefetching 

– More loop transformations 
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Architecture: the Compiler Should Know the Chip 

• SSE level and other capabilities depend on the exact chip 

 

• Taking an Intel “Sandy Bridge” from Stampede as an example… 

– Supports SSE, SSE2, SSE4_1, SSE4_2, AVX 

– Supports Intel’s SSSE3 = Supplemental SSE3, not the same as AMD’s 

– Does not support AMD’s SSE5 

 

• In Linux, a standard file shows features of your system’s architecture 

– Do this:   cat /proc/cpuinfo    {shows cpu information} 

– If you want to see even more, do a Web search on the model number 

 

• This information can be used during compilation… 
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Compiler Options Affecting Performance 

With Intel 13 compilers on Stampede: 

• -xhost enables the highest level of vectorization supported on the 

processor on which you compile 

 

• -opt-prefetch enables data prefetching 

 

• -fast sounds pretty good, but it is not recommended! 

 

• To optimize I/O on Stampede: -assume buffered_io 

 

• To optimize floating-point math: -fp=model fast[=1|2] 
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Interprocedural Optimization (IP) 

• The Intel compilers, like most, can do IP (option -ip) 

– Limits optimizations to within individual files 

– Produces line numbers for debugging 

 

• The Intel -ipo compiler option does more 

– Enables multi-file IP optimizations (between files) 

– Places additional information in each object file 

– IP among ALL objects is performed during the load phase,  

– Can take much more time, as code is recompiled during linking 

– It is important to include options in link command (-ipo -O3 -xhost, etc.) 

– Easiest way to ensure correct linking is to link using mpif90 or mpicc 

– All this works because the special Intel xild loader replaces ld 

– When archiving in a library, you must use xiar, instead of ar 
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Other Intel Compiler Options 

• -g             generate debugging information, symbol table 

• -vec_report# {# = 0-5} turn on vector diagnostic reporting –

 make sure your innermost loops are vectorized 

• -C (or -check) enable extensive runtime error checking 

• -CB -CU check bounds, check uninitialized variables 

• -convert kw specify format for binary I/O by keyword {kw =

 big_endian, cray, ibm, little_endian, native, vaxd} 

• -openmp  multithread based on OpenMP directives 

• -openmp_report# {# = 0-2} turn on OpenMP diagnostic reporting 

 

• Do NOT USE: 

– -static load libs statically at runtime  

– -fast includes -static and -no-prec-div 
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Best Practices for Compilers 

• Normal compiling for Stampede 

– Intel 13:  

 icc/ifort -O3 -xhost -ipo prog.c/cc/f90 

– GNU 4.4 (not recommended, not supported): 

 gcc -O3 -march=corei7-avx -mtune=corei7-avx -fwhole-program -combine prog.c 

– GNU (if absolutely necessary) mixed with icc-compiled subprograms: 

 mpicc -O3 -xhost -cc=gcc -L$ICC_LIB -lirc prog.c subprog_icc.o 

 

• -O2 is the default; compile with -O0 if this breaks (very rare) 

 

• Debug options should not be used in a production compilation  

– Compile like this only for debugging: ifort -O2 -g -CB test.c 
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Lab: Compiler-Optimized Naïve Code vs. Libraries 

• Challenge: how fast can we do a linear solve via LU decomposition? 

 

• Naïve code is copied from Numerical Recipes and two alternative codes 

are based on calls to GSL and LAPACK 

– LAPACK references can be resolved by linking to an optimized library like ATLAS or MKL  

 

• Compare the timings of these codes when compiled with different 

compilers and optimizations 

– Compile the codes with different flags, including “-g”, “-O2”, “-O3” 

– Submit a job to see how fast the codes run 

– Recompile with new flags and try again 

– Can even try to use MKL’s built-in OpenMP multithreading 

 

• Source is in ~tg459572/LABS/ludecomp.tgz 
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Putting Performance into Development: Tuning 
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In-Depth vs. Rough Tuning 

In-depth tuning is a long, iterative process: 

• Profile code 

• Work on most time intensive blocks 

• Repeat as long as you can tolerate… 

 

For rough tuning during development: 

• Learn about common microarchitectural 

features (like SSE) 

• Get a sense of how the compiler tries to 

optimize instructions, given certain 

features 
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First Rule of Thumb: Minimize Your Stride 

• Minimize stride length 

– It increases cache efficiency 

– It sets up hardware and software prefetching 

– Stride lengths of large powers of two are typically the worst case, 

leading to cache and translation look-aside buffer (TLB) misses due to 

limited cache associativity 

 

•  Strive for stride-1 vectorizable loops 

– Can be sent to a SIMD unit 

– Can be unrolled and pipelined 

– Can be processed by SSE and AVX instructions 

– Can be parallelized through OpenMP directives 
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The Penalty of Stride > 1 

• For large and small 

arrays, always try to 

arrange data so that 

structures are arrays 

with a unit (1) stride. 
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Bandwidth Performance Code: 

 

do i = 1,10000000,istride 

sum = sum + data( i ) 

end do 

Performance of Strided Access
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Stride 1 in Fortran and C 

• The following snippets of code illustrate the correct way to access 

contiguous elements of a matrix, i.e., stride 1 in Fortran and C  
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Fortran Example: 

 

real*8 :: a(m,n), b(m,n), c(m,n)  

...  

do i=1,n  

   do j=1,m  

      a(j,i) = b(j,i) + c(j,i)  

   end do  

end do  

C Example: 

 

double a[m][n], b[m][n], c[m][n];  

...  

for (i=0; i < m; i++) 

{  

   for (j=0; j < n; j++) 

     a[i][j] = b[i][j] + c[i][j];   

} 

Column Major Row Major 



Second Rule of Thumb: Inline Your Functions 

• What does inlining achieve? 

– It replaces a function call with a full copy of that function’s instructions 

– It avoids putting variables on the stack, jumping, etc. 

 

• When is inlining important? 

– When the function is a hot spot 

– When function call overhead is comparable to time spent in the routine 

– When it can benefit from Inter-Procedural Optimization 

 

• As you develop “think inlining” 

– The C “inline” keyword provides inlining within source 

– Use -ip or -ipo to allow the compiler to inline 
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integer :: ndim=2, niter=10000000 

real*8  :: x(ndim), x0(ndim), r 

integer :: i, j 

   ... 

   do i=1,niter 

      ... 

      r=dist(x,x0,ndim) 

      ... 

   end do 

   ... 

end program 

 

real*8 function dist(x,x0,n) 

real*8  :: x0(n), x(n), r 

integer :: j,n 

r=0.0 

do j=1,n 

   r=r+(x(j)-x0(j))**2 

end do 

dist=r 

end function 

integer:: ndim=2, niter=10000000 

real*8  :: x(ndim), x0(ndim), r 

integer :: i, j 

   ... 

   do i=1,niter 

      ... 

      r=0.0 

    do j=1,ndim 

         r=r+(x(j)-x0(j))**2 

      end do 

      ... 

   end do 

   ... 

end program 

Example: Procedure Inlining 
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Trivial function dist  called 

niter times 

function dist has been  

inlined inside the i loop 

Low-overhead loop j 

executes niter times 



Tips for Writing Faster Code 
• Avoid excessive program modularization (i.e. too many subroutines)  

– Write routines that can be inlined  

– Use macros and parameters whenever possible  

 

• Minimize the use of pointers  

 

• Avoid casts or type conversions, implicit or explicit 

– Conversions involve moving data between different execution units  

 

• Avoid I/O, function calls, branches, and divisions inside loops 

– Why pay overhead over and over? 

– Move loops into the subroutine, instead of looping the subroutine call 

– Structure loops to eliminate conditionals  

– Calculate a reciprocal outside the loop and multiply inside 
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Best Practices from the Stampede User Guide 

Additional performance can be obtained with these techniques: 

• Memory subsystem tuning 

– Blocking/tiling arrays 

– Prefetching (creating multiple streams of stride-1) 

 

• Floating-point tuning 

– Unrolling small inner loops to hide FP latencies and enable vectorization 

– Limiting use of Fortran 90+ array sections (can even compile slowly!) 

 

• I/O tuning 

– Consolidating all I/O to and from a few large files in $SCRATCH 

– Using direct-access binary files or MPI-IO 

– Avoiding I/O to many small files, especially in one directory 

– Avoiding frequent open-and-closes (can swamp the metadata server!) 
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Loop Tiling to Fit Into Cache 
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Example: matrix-matrix 

multiplication  

real*8 a(n,n), b(n,n), c(n,n) 

do ii=1,n,nb  ! Stride by block size 

  do jj=1,n,nb     

    do kk=1,n,nb       

      do i=ii,min(n,ii+nb-1) 

        do j=jj,min(n,jj+nb-1) 

          do k=kk,min(n,kk+nb-1) 

      c(i,j)=c(i,j)+a(i,k)*b(k,j) 

nb x nb nb x nb nb x nb nb x nb 

Takeaway: all the performance libraries do this, so you don’t have to 



Conclusions 

• Performance should be considered at every phase of application 

development 

– Large-scale parallel performance (speedup and scaling) is most 

influenced by choice of algorithm 

– Per-processor performance is most influenced by the translation of the 

high-level API and syntax into machine code (by libraries and compilers) 

 

• Coding style has implications for how well the code ultimately runs 

 

• Optimization that is done for server CPUs (e.g., Intel Sandy Bridge) 

also serves well for accelerators and coprocessors (e.g., Intel MIC) 

– Relative speed of inter-process communication is even slower on MIC 

– MKL is optimized for MIC, too, with automatic offload of MKL calls 

– It’s even more important for MIC code to vectorize well 
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