
Introduction to Parallel Programming

Linda Woodard

woodard@cac.cornell.edu

 October 23, 2013

10/21/2013 www.cac.cornell.edu 1

mailto:woodard@cac.cornell.edu

What is Parallel Programming?

• Theoretically a very simple concept

– Use more than one processor to complete a task

• Operationally much more difficult to achieve

– Tasks must be independent

• Order of execution can’t matter

– How to define the tasks

• Each processor works on their section of the problem (functional

parallelism)

• Each processor works on their section of the data (data parallelism)

– How and when can the processors exchange information

10/21/2013 www.cac.cornell.edu 2

Why Do Parallel Programming?

• Limits of single CPU computing

 – performance

 – available memory

• Parallel computing allows one to:

 – solve problems that don’t fit on a single CPU

 – solve problems that can’t be solved in a reasonable time

• We can solve…

 – larger problems

 – faster

 – more cases

10/21/2013 www.cac.cornell.edu 3

Terminology

• node: a discrete unit of a computer system that typically runs its own instance of

the operating system
– Stampede has 6400 nodes

• processor: chip that shares a common memory and local disk
– Stampede has two Sandy Bridge processors per node

• core: a processing unit on a computer chip able to support a thread of execution
– Stampede has 8 cores per processor or 16 cores per node

• coprocessor: a lightweight processor
– Stampede has a one Phi coprocessor per node with 61 cores per coprocessor

• cluster: a collection of nodes that function as a single resource

10/21/2013 www.cac.cornell.edu 4

5

Definition: each process performs a different "function" or executes

different code sections that are independent.

Examples:

 2 brothers do yard work (1 edges & 1 mows)

 8 farmers build a barn

A

B C D

E

Functional Parallelism

• Commonly programmed with message-

passing libraries

6

Data Parallelism
Definition: each process does the same work on unique and

independent pieces of data

Examples:

 2 brothers mow the lawn

 8 farmers paint a barn

C

B

A

B B

• Usually more scalable than functional parallelism

• Can be programmed at a high level with OpenMP,

or at a lower level using a message-passing library

like MPI or with hybrid programming.

7

Task Parallelism

 a special case of Data Parallelism

Definition: each process performs the same functions but do not

communicate with each other, only with a “Master” Process. These

are often called “Embarrassingly Parallel” codes.

Examples:

 Independent Monte Carlo Simulations

 ATM Transactions

Stampede has a special wrapper for

submitting this type of job; see

https://www.xsede.org/news/-/news/item/5778

A

B C D

https://www.xsede.org/news/-/news/item/5778
https://www.xsede.org/news/-/news/item/5778
https://www.xsede.org/news/-/news/item/5778

Is it worth it to go Parallel?

• Writing effective parallel applications is difficult!!

 – Load balancing is critical

 – Communication can limit parallel efficiency

 – Serial time can dominate

• Is it worth your time to rewrite your application?

– Do the CPU requirements justify parallelization? Is your problem really “large”?

– Is there a library that does what you need (parallel FFT, linear system solving)

– Will the code be used more than once?

10/21/2013 www.cac.cornell.edu 8

Theoretical Upper Limits to Performance

• All parallel programs contain:

– parallel sections (we hope!)

– serial sections (unfortunately)

• Serial sections limit the parallel effectiveness

 serial portion parallel portion

 1 task

 2 tasks

 4 tasks

• Amdahl’s Law states this formally

10/21/2013 www.cac.cornell.edu 9

Amdahl’s Law

• Amdahl’s Law places a limit on the speedup gained by using multiple processors.

– Effect of multiple processors on run time

 tn = (fp / N + fs)t1

– where

• fs = serial fraction of the code

• fp = parallel fraction of the code

• N = number of processors

• t1 = time to run on one processor

• Speed up formula: S = 1 / (fs + fp / N)

– if fs = 0 & fp = 1, then S = N

– If N infinity: S = 1/fs; if 10% of the code is sequential, you will never speed up by
more than 10, no matter the number of processors.

 10/21/2013 www.cac.cornell.edu 10

Practical Limits: Amdahl’s Law vs. Reality

• Amdahl’s Law shows a theoretical upper limit for speedup

• In reality, the situation is even worse than predicted by Amdahl’s Law due to:

 – Load balancing (waiting)

 – Scheduling (shared processors or memory)

 – Communications

 – I/O

10/21/2013 www.cac.cornell.edu 11

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250

Number of processors

Amdahl's Law

Reality

fp = 0.99

S

p

e

e

d

u

p

12

High Performance Computing

Architectures

13

HPC Systems Continue to Evolve Over Time…

Centralized Big-Iron

Decentralized collections

Mainframes

Mini Computers

PCs

RISC Workstations

RISC MPPS

Specialized

Parallel Computers

Clusters Grids + Clusters

1970 1980 1990 2000

NOWS

2010

Hybrid Clusters

14

Cluster Computing Environment

…

Login

Node(s)

Access

Control

Compute Nodes

File

Server(s)

• Login Nodes

• File servers & Scratch Space

• Compute Nodes

• Batch Schedulers

Types of Parallel Computers (Memory Model)

• Useful to classify modern parallel computers by their memory model

– shared memory

multiple cores with access to the same physical memory

– distributed memory

each task has its own virtual address space

– hybrid

mixture of shared and distributed memory; shared memory on cores in a single

node and distributed memory between nodes

• Most parallel machines today are multiple instruction, multiple data (MIMD)

10/21/2013 www.cac.cornell.edu 15

Shared and Distributed Memory Models

10/21/2013 www.cac.cornell.edu 16

Shared memory: single address space. All

processors have access to a pool of shared

memory; easy to build and program, good

price-performance for small numbers of

processors; predictable performance due to

uniform memory access (UMA).

Methods of memory access :

 - Bus

 - Crossbar

Distributed memory: each processor

has its own local memory. Must do

message passing to exchange data

between processors. cc-NUMA enables

larger number of processors and shared

memory address space than SMPs; still

easy to program, but harder and more

expensive to build. (example: Clusters)

Methods of memory access :

 - various topological interconnects

Network

P

M

P P P P P

M M M M M

Memory

Bus

P P P P P P

Programming Parallel Computers

10/21/2013 www.cac.cornell.edu 17

• Programming single-processor systems is (relatively) easy because

they have a single thread of execution and a single address space.

• Programming shared memory systems can benefit from the single

address space

• Programming distributed memory systems is more difficult due to

multiple address spaces and the need to access remote data

• Programming hybrid memory systems is even more difficult, but

gives the programmer much greater flexibility

Single Program, Multiple Data (SPMD)

SPMD:

– One source code is written

– Code can have conditional execution based on which processor is

executing the copy

– All copies of code are started simultaneously and communicate and

sync with each other periodically

10/21/2013 www.cac.cornell.edu 18

SPMD Programming Model

10/21/2013 www.cac.cornell.edu 19

Processor 0 Processor 1 Processor 2 Processor 3

source.c

source.c source.c source.c source.c

Shared Memory Programming: OpenMP

• Shared memory systems have a single address space:

– applications can be developed in which loop iterations (with no

dependencies) are executed by different processors

– shared memory codes are mostly data parallel, ‘SIMD’ kinds of codes

– OpenMP is the new standard for shared memory programming

(compiler directives)

– Vendors offer native compiler directives

10/21/2013 www.cac.cornell.edu 20

Distributed Memory Programming: MPI

 Distributed memory systems have separate address spaces for

each processor

– Local memory accessed faster than remote memory

– Data must be manually decomposed

– MPI is the standard for distributed memory programming (library of

subprogram calls)

10/21/2013 www.cac.cornell.edu 21

Hybrid Memory Programming:

• Systems with multiple shared memory nodes

• Memory is shared at the node level, distributed above that:

– Applications can be written using OpenMP

– Applications can be written using MPI

– Application can be written using both OpenMP and MPI

10/21/2013 www.cac.cornell.edu 22

23

Questions?

