
Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 1

Computing & Information Science 4205

Effective Use of High Performance Computing

Steve Lantz
slantz@cac.cornell.edu

www.cac.cornell.edu/~slantz

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 2

Course Overview

Week 1 Lecture Notes

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 3

Goals for CIS 4205

•  Introduction to HPC – Practical experience for your research

•  Finding the parallelism in your work

•  Measuring speedup & efficiency and the factors that affect it

•  Writing & debugging parallel code (MPI & OpenMP)

•  Exposure to using production HPC systems at Cornell

•  Effective techniques for inherently (“embarrassingly”) parallel codes

•  Critical analysis of current & future HPC solutions

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 4

A Little About Me

•  Role at the Cornell Center for Advanced Computing
–  Senior Research Associate: consulting, training, advising, & participating
–  Involved in HPC around 25 years

•  Background
–  Education
–  Experience

•  Research interests
–  Numerical modeling and simulation
–  Fluid and plasma dynamics
–  Parallel computing

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 5

A Little About You*

•  Fields of study and/or research interests

•  Programming experience
–  C, C++, Fortran, Others…
–  Scripting languages

•  Practical experiences
–  Ever written a program from scratch for your research?
–  Ever had to work with someone else’s code?
–  Which was harder? Why?

•  HPC experience

•  Your goals for this course

* - (“A Little Bit Me, A Little Bit You” – Monkees, 1967)

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 6

Assignments

•  Check the course website before every class
–  http://www.cac.cornell.edu/~slantz/CIS4205

•  Assignments are due on date specified

•  Assignments should be emailed to me
–  slantz@cac.cornell.edu

•  Assignments can be done on any HPC system
–  Windows, Linux, Macintosh OS X
–  HPC system must have MPI, OpenMP & batch scheduling system

•  Access to CAC HPC systems is available

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 7

Connecting to CAC Resources

•  All students’ Cornell NetIDs will be added the course account
–  Everyone will have the option to use CAC resources for assignments

•  Accessing CAC machines
–  http://www.cac.cornell.edu/Documentation/Linux.asx
–  http://www.cac.cornell.edu/Documentation/Linux

•  Poll: what’s your background?
–  Familiar with Linux?
–  Familiar with ssh and X Windows?
–  Comfortable with text editors (emacs, vi)?

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 8

Where and How to Find Me

•  Physical and and virtual whereabouts
–  Office: 533 Frank H. T. Rhodes Hall
–  Phone: 4-8887
–  Email: slantz@cac.cornell.edu

•  Office hours by appointment

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 9

Introduction to High Performance Computing

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Why HPC? Why Parallel Computing?

•  Want to have best possible time-to-solution, minimize waiting

•  Want to gain a competitive advantage

•  As expected, processor clock speeds have flattened out
–  Not the end of Moore’s law: transistor densities are still doubling every 1.5 years
–  Clock speeds limited by power consumption, heat dissipation, current leakage
–  Bad news for mobile computers!

•  Parallelism will be the path toward future performance gains
–  Trend is toward multi-core: put a cluster on a chip (in a laptop)
–  Goes well beyond microarchitectures that have multiple functional units

10

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Evolution of HPC

Centralized Big-Iron

Decentralized Collections

Mainframes – CRAYs – Vector Supercomputers

Mini Computers

PCs
RISC Workstations

RISC MPPS

Specialized
Parallel Computers

Clusters
Grids + Clusters

1970 1980 1990 2000

NOWS

PCs

11

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

The Cornell Programmer’s View

Timeframe – hardware – parallel programming model

•  Mid ’80’s – IBM mainframe with attached Floating Point Systems array
processors – IBM and FPS compiler extensions

•  Late ’80’s – Interconnected IBM 3090 mainframes featuring internal vector
processors – Parallel VS FORTRAN and APF compilers

•  Early ’90’s – IBM SP1, rack-mounted RS6000 workstations with POWER
RISC processors networked via multistage crossbar switch; KSR-1 from
Kendall Square Research – PVM, MPL, MPI message passing libraries;
HPF/KAP directives; KSR compiler for ALLCACHE “virtual shared memory”

•  Mid ’90’s – IBM SP2 featuring POWER2 and P2SC – MPI (not a compiler)

•  Late ’90’s to present – Several generations of Dell HPC clusters (Velocity
1, 1+, 2, 3), quad or dual Intel Pentiums running Windows, Red Hat Linux –
MPI plus OpenMP compiler directives for multithreading

12

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Current HPC Platforms: COTS-Based Clusters

COTS = Commercial off-the-shelf

…

Login Node(s)

Access
Control

Compute Nodes

File
Server(s)

13

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Shared and Distributed Memory

core1 core2

CPU1

core1 core2

CPU2

controller RAM

FSB

Platform (node)

node1 node2 node3

Cluster interconnect

Shared memory on each node… Distributed memory across cluster

Multi-core CPUs in clusters – two types of parallelism to consider

14

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Shared and Distributed Memory

core1 core2

CPU1

core1 core2

CPU2

controller RAM

FSB

Platform (node)

node1 node2 node3

Cluster interconnect

Shared memory on each node… Distributed memory across cluster
OpenMP
Pthreads

MPI
MPI

15

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

OpenMP and MPI? In 2009?

Strengths:
•  Adherence to carefully defined specifications (not standards per se)
•  Specifications still under active development
•  Cross-platform, multi-OS, multi-language (e.g., pypar in Python)
•  Wide acceptance
•  Time-tested with large existing code base
•  Useful for both data and task (functional) parallelism

Weaknesses:
•  Relatively low-level programming (though not as low as pthreads)
•  Mindset taken from procedural languages (C, Fortran)

16

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Where’s My Parallel Compiler?

•  You’ve had it for years! “Serial” compilers produce code that takes
advantage of parallelism at the top of the memory hierarchy

http://www.tomshardware.com/2006/06/26/xeon_woodcrest_preys_on_opteron/page9.html

Example: SSE(2/3/4)
instructions operate on
several floats or doubles
simultaneously using
special 128-bit-wide
registers in Intel Xeons
(vector processing)

17

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Parallelism Inside the Intel Core

http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2748&p=4

In the Intel Core
microarchitecture:
•  4 instructions

per cycle
•  Branch

prediction
•  Out-of-order

execution
•  5 prefetchers
•  4MB L2 cache
•  3 128-bit SSE

registers
•  1 SSE / cycle

18

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Why Not Crank Up the Clock?

Because the
CPU’s power
consumption
goes up like
the cube of
frequency!

No wonder
Intel tries so
hard to boost
the IPC…

19

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

OK, What’s Next?

Trend toward growing numbers of
cores per processor die

•  Moore’s Law still holds;
transistor densities are still
increasing

•  Higher densities don’t translate
into faster speeds due to:

–  Problems with heat dissipation
–  Hefty power requirements
–  Leakage current

•  The “free lunch” of ever-
increasing clock speeds is over! http://www.gotw.ca/publications/concurrency-ddj.htm

20

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Signs of the Times…

•  IBM promotes BlueGene HPC line with 1000’s of low-frequency, low-
power chips (700 MHz PowerPCs)

•  On 2/11/07, Intel announces successful tests of an 80-core research
processor – “teraflops on a chip”

21

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Implications for Programmers

•  Concurrency will no longer be just desirable, it will be essential
–  Previously it was the economical path to greater performance
–  Now it has become the physically reasonable path

•  Compilers (still) aren't the answer
–  Degree of concurrency depends on algorithm choices
–  Need for high-level creation (as opposed to mere identification) of concurrent

code sections
•  Improved programming languages could make life easier, but nothing

has caught on yet
•  Some newer languages (Java, C++) do have mechanisms for

concurrency built in… but kind of clumsy to use…
•  In the final analysis: TANSTAAFL

22

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Conclusions

•  Future processor technology will drive programmers to create and
exploit concurrency in their software to get performance

•  Some problems are inherently not parallelizable; what then?
–  “9 women can't produce a baby in one month”
–  …But… what if the goal isn't just to produce one baby, but many?
–  “Embarrassing parallelism” isn’t so embarrassing any more
–  Examples: optimization of a design; high-level Monte Carlo simulation

•  Coding for efficiency and performance optimization will get more, not
less, important

–  Not all performance gains need to come from high-level parallelism
–  Nevertheless, parallelism needs to be designed into codes, preferably from the

beginning

23

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 24

Parallel Computing: Types of Parallelism

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Parallel Computing: Definitions

•  As we have seen, HPC necessarily relies on parallel computing
•  Parallel computing…

–  Involves the use of multiple processors simultaneously to reduce the time
needed to solve a single computational problem.

•  Examples of fields where this is important:
–  Climate modeling, weather forecasting
–  Aircraft and ship design
–  Cosmology, simulations of the evolution of stars and galaxies
–  Molecular dynamics and electronic (quantum) structure

•  Parallel programming…
–  Is writing code in a language (plus extensions) that allows you to explicitly

indicate how different portions of the computation may be executed concurrently
•  Therefore, the first step in parallel programming is to identify the

parallelism in the way your problem is being solved (algorithm)

25

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 26

Data Parallelism

Definition: when independent tasks can apply the same operation to
different elements of the data set at the same time.

Examples:
 2 brothers mow the lawn
 8 farmers paint a barn

C

B

A

B B

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 27

Data Parallelism
Partitions of the Data Can Be Processed Simultaneously

// initialize array values to 1
 a[]=1;
 b[]=1;
 c[]=1;

 for (i=0; i<3; i++)
 {
 a[i] = b[i] + c[i];
 }

// Serial Execution
 i=0 (a[0] = 2)
 a[0] = b[0] + c[0];
 i=1 (a[1] = 2)
 a[1] = b[1] + c[1];
 i=2 (a[2] = 2)
 a[2] = b[2] + c[2];

// Parallel Execution
 i=0 (a[0] = 2) i=1 (a[1] = 2) i=2 (a[2] = 2)
 a[0] = b[0] + c[0]; a[1] = b[1] + c[1]; a[2] = b[2] + c[2];

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 28

Data Parallelism
MPI Example

#include <stdio.h>
#include <mpi.h>
#include <malloc.h>

void main(int argc, char **argv)
 {
 int myid, numprocs;
 int i;
 int *a,*b,*c;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 a = (int *) malloc(numprocs*sizeof(int));
 b = (int *) malloc(numprocs*sizeof(int));
 c = (int *) malloc(numprocs*sizeof(int));

 for (i=0;i<numprocs;i++)
 {
 // initialize array values to i
 a[i]=i;
 b[i]=i;
 c[i]=i;
 }
 a[myid] = b[myid] + c[myid];
 printf("a[%d] = %d\n",myid,a[myid]);
 MPI_Finalize();
 }

mpiexec –n 8 dp1.exe

3: a[3] = 6

4: a[4] = 8

5: a[5] = 10

7: a[7] = 14

0: a[0] = 0

2: a[2] = 4

6: a[6] = 12

1: a[1] = 2

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 29

Functional Parallelism

Definition: when independent tasks can apply different operations to the
same (or different) data elements at the same time.

Examples:
 2 brothers do yard work (1 rakes, 1 mows)
 8 farmers build a barn

A

B C D

E

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 30

Functional Parallelism
Partitions of the Program Can Execute Simultaneously

// initialize values 0-9
 a[]=i;
 b[]=i;

// These different operations can happen at the same time
 for (i=0; i<10; i++)
 {
 c[i] = a[i] + b[i];
 }
 for (i=0; i<10; i++)
 {
 d[i] = a[i] * b[i];
 }

// This part requires solutions from above
 for (i=0; i<10; i++)
 {
 e[i] = d[i] - c[i];
 }

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 31

Functional Parallelism
MPI Example

#include <stdio.h>
#include <mpi.h>
#include <malloc.h>

void main(int argc, char **argv)
 {
 int myid, numprocs;
 int i;
 int iter=10;
 int *a,*b,*c,*d,*e;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 if (numprocs < 3)
 {
 printf("ERROR: This example requires 3 processes\n");
 }
 else
 {
 a = (int *) malloc(iter*sizeof(int));
 b = (int *) malloc(iter*sizeof(int));
 c = (int *) malloc(iter*sizeof(int));
 d = (int *) malloc(iter*sizeof(int));
 for (i=0; i<iter; i++)
 {
 a[i] = i;
 b[i] = i;
 }

if (myid == 0)

 {

 MPI_Recv(c,10,MPI_INT,1,0,MPI_COMM_WORLD,&status);

 MPI_Recv(d,10,MPI_INT,2,0,MPI_COMM_WORLD,&status);

 e = (int *) malloc(iter*sizeof(int));

 for (i=0; i<iter; i++)

 {

 e[i] = d[i] - c[i];

 printf("e[%d] = %d\n",i,e[i]);

 }

 }

 else if (myid == 1)

 {

 for (i=0; i<iter; i++) { c[i] = a[i] + b[i]; }

 MPI_Send(c,10,MPI_INT,0,0,MPI_COMM_WORLD);

 }

 else if (myid == 2)

 {

 for (i=0; i<iter; i++) { d[i] = a[i] * b[i]; }

 MPI_Send(d,10,MPI_INT,0,0,MPI_COMM_WORLD);

 }

 else

 {

 printf("Process id %d not needed\n",myid);

 }

 }

 MPI_Finalize();

 }

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 32

Task Parallelism

Definition: when independent “Worker” tasks can perform functions that
do not need to communicate with each other, only with a “Master” or
“Manager” process.

Such tasks are often called “Embarrassingly Parallel” because they can
be parallelized with little extra work or thought.

Examples:
 Independent Monte Carlo Simulations
 ATM Transactions

A

B C D

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 33

Task Parallelism
Independent Tasks are Distributed as Workers are Available

// initialize values 0-99

 a[]=i;

 b[]=i;

// Send each idle worker an index of a[] & b[] to add and return the sum

// and continue while there is still work to be done

 while (i<100)

 {

 // find an idle worker & send it value of i (index) to add

 // receive back summed values

 }

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 34

Pipeline Parallelism

Definition: each task works on one stage in a sequence of stages. The
output of one stage is the input of the next. (Note: This works best
when each stage takes the same amount of time to complete)

Examples:
 Assembly lines
 Computing partial sums

A

B

C

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

i

i

i

i

i+1 i+2 i+3 i+4 i+5 i+6

i+1 i+2

i+1

i+3

i+2

i+1

i+4

i+3

i+2

i+5

i+4

i+3

i+6

i+5

i+4

i+6

i+5 i+6

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 35

Pipeline Parallelism

// Process 0 initializes a[] & b[]

 for (i=0; i<=3; i++)

 {

 a[i] = i;

 b[i] = 0;

 }

 b[0] = a[0];

// Process 0 sends a & b to Process 1

// Process 1 receives a & b from Process 0

 b[1] = b[0] + a[1];

// Process 1 sends a & b to Process 2

// Process 2 receives a & b from Process 1

 b[2] = b[1] + a[2];

// Process 2 sends a & b to Process 3

// Process 3 receives a & b from Process 2

 b[3] = b[2] + a[3];

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 36

Tightly Coupled Parallel Approaches
Parallel tasks must exchange data during the computation

Loosely Coupled Parallel Approaches
Parallel tasks can complete independent of each other

for (int i=0; i < n; i++)

 {

 for (int j=0; j < m; j++)

 {

 //Perform Calculation Here

 } // for j

 } // for i

Tightly vs. Loosely Coupled Parallelism

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 37

Tightly Coupled Example: Strong Data Dependencies

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 38

Loosely Coupled Example: Master-Worker Codes

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 39

HPC Examples at Cornell:
Parallel Computing and Data Intensive Computing

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 40

Cornell Institute for Social and Economic Research
 http://www.ciser.cornell.edu/

Computational Biology Service Unit
 http://cbsu.tc.cornell.edu/index.htm

Computational Finance
 http://www.orie.cornell.edu/orie/manhattan/

Cornell Fracture Group
 http://www.cfg.cornell.edu

Parallel Computing Examples

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 41

Modern Research is Producing Massive Amounts of Data
–  Microscopes
–  Telescopes
–  Gene Sequencers
–  Mass Spectrometers
–  Satellite & Radar Images
–  Distributed Weather Sensors
–  High Performance Computing (especially HPC Clusters)

Research Communities Rely on Distributed Data Sources
–  Collaboration
–  Virtual Laboratories
–  Laboratory Information Management Systems (LIMS)

New Management and Usage Issues
–  Security
–  Reliability/Availability
–  Manageability
–  Data Locality – You can’t ftp a petabyte to your laptop….

Data Intensive Computing Applications

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 42

Cornell Fracture Group
Tony Ingraffea
Serving Finite Element Models via SQL Server & Web Services

 http://www.cfg.cornell.edu/

Physically Accurate Imagery
Steve Marschner

 http://www.cs.cornell.edu/~srm/

The Structure and Evolution of the Web
William Arms

 http://www.cs.cornell.edu/wya/

Data Intensive Computing Examples

Arecibo - World’s Largest Radiotelescope
Johannes Gehrke, Jim Cordes, David Lifka
Serving Astronomy Data via SQL Server and Web Services

 http://arecibo.tc.cornell.edu/PALFA
 http://www.cs.cornell.edu/johannes/

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 43

High Performance Computing Architectures

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 44

Flynn’s Taxonomy
 Classification Scheme for Parallel Computers

SISD SIMD

MIMD MISD

Single
Si

ng
le

Multiple

M
ul

tip
le

In
st

ru
ct

io
n

St
re

am

Data Stream

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Examples from Flynn’s Categories

•  SISD – Single Instruction Stream, Single Data Stream
–  Common uniprocessor machines

•  SIMD – Single Instruction Stream, Multiple Data Streams
–  Processor arrays (including GPUs) & pipelined vector processors

•  MISD – Multiple Instruction Streams, Single Data Stream
–  Systolic arrays: think data pump or pumping-heart model (not many built)

•  MIMD – Multiple Instruction Streams, Multiple Data Streams
–  Multiprocessors and multicomputers

•  Multiprocessor: multi-CPU computer with shared memory
–  SMP: Symmetric MultiProcessor (uniform memory access)
–  NUMA: Non Uniform Memory Access multiprocessor

•  Multicomputer: team of computers with distributed CPUs and memory
–  Must have external interconnect between “nodes”

45

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Shared vs. Switched Media

bus

processors

switch

processors

NUMA, Multicomputer:
switch can grow with
number of processors

SMP: not scalable,
bus becomes congested
as processors are added

46

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

2D Mesh and Torus Topologies

47

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Hypercube Topology

48

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Tree, Fat Tree, and Hypertree Topologies

Fat tree if links get wider toward the top…

49

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Clos Network: Equal to a Full Crossbar Switch,
Better Than a Hypertree (Fewer Hops)

Generally n = m, so inputs and outputs can be bundled
into the same cable and plug into a single switch port

50

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Comparison of Switched Media

Mellanox 36-port InfiniBand switch

Type Latency Bandwidth Cost
Gigabit Ethernet ~1 msec 0.1 gigabyte/sec $
10 Gigabit Ethernet ~100 µsec 1.0 gigabyte/sec $$
QDR InfiniBand ~1µsec 3.6 gigabyte/sec $$$

51

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Computing Concepts

52

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Single
Processor
Memory
Hierarchy

53

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Creating and Running Software

•  Compiler
–  Produces object code: from myprog.c, creates myprog.o (Windows: .obj)

•  Linker
–  Produces complete executable, including object code imported from libraries

•  Shared Objects (.so) and Dynamic Load Libraries (Windows DLLs)
–  These are loaded at runtime: the link step inserts instructions on what to import
–  If a shared object is loaded, a single copy can be used by multiple processes

•  Process
–  A running executable: the OS controls multitasking of processes via scheduling

•  Virtual Memory
–  “Address space” available to a running process, addresses can be 32- or 64-bit

•  Paging (to Disk)
–  Physical RAM has been exceeded: requested data are not in any cache (cache

miss) or in RAM (page fault) must be loaded from swap space on a hard drive

54

