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Building and Running a Parallel Application 
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Unix/Linux Commands to Know and Cherish 
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• Shell: bash or tcsh 

- The shell defines many of the commands you enter at the command line 

- The Bourne Again Shell (bash) is an update to the original Bourne shell (sh) 

- Similarly tcsh is an update to csh, the C Shell (up-arrow to get last command) 

• man = “manual” = the way you get help, e.g., “man ls” 

• Working with directories: cd, pwd, ls, mkdir, rmdir 

- cd to change directory (popd, pushd to use directory stack); “cd ..” = up a level 

- pwd = print working directory = print your current location (also known as .) 

- “ls -l” gives you complete directory listing, “ls -a” lets you see .prefix-files 

- mkdir to create a new directory, rmdir to remove an existing one 

• Environment variables: export (bash, sh) or setenv (tcsh, csh) 

- Variables that are local to the shell are defined with “set” 

- Env variables are inherited by shells started in the parent shell 

- Type “set” to see locals, “env” to see environment 
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Unix/Linux Commands to Know and Cherish, 2 
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• To view an environment variable: “echo $varname” 

• Move, copy, remove files: mv, cp, rm 

• To view the contents of a file: “cat filename” 

- cat = “concatenate to standard output”, stdout is the terminal by default 

• Redirect stdout using symbols 

- “cat file1 > file2” replaces (clobbers) file2 with the contents of file1  

- “cat file1 >> file2” appends file2 with the contents of file1 

- “cmd1 | cmd2” to pipe stdout of cmd1 to stdin of cmd2 

• Text editors: vi, emacs 

- Terminal window becomes plain text editor 

- No graphical interface, all editing done via special key sequences 

• Controlling processes 

- control sequences: ctrl-c = kill, ctrl-z = suspend 

- bg to put process in background, fg to bring to foreground, “jobs” to see bg list 
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Remote Shell and Secure Shell 
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What Happens When You Run an MPI Program? 
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• Command mpiexec (mpirun in some implementations) launches 

multiple processes on same or different machines 

• The remote processes are launched using ssh 

• All processes are copies of the same program, yet they are completely 

independent processes 

• mpiexec assigns a unique rank to each process, which becomes part 

of that process’s environment 

• A process contacts the local MPI daemon (mpd) running on each 

machine in order to communicate with other MPI processes 

• The mpd knows about the other processes that are part of the same 

MPI job, and their ranks 

 

• Demonstration of compiling and running helloworld.c 
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Testing Your MPI Setup 
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Start up some daemons 

      mpdboot -n <numberofhosts> 

 

If mpdboot doesn't work, here is plan B for starting the mpd daemons: 

      At the command prompt, enter: mpd & 

      Run mpdtrace -l to find out the port number mpd is running on 

      To start mpd's on the other machines, run: 

      ssh <nextmachinename> mpd -h <firstmachinename> -p <port> -d 

 

Once all the daemons are running, see what is going on with MPICH 

      Run mpdtrace to get a quick trace and hopefully see all the nodes 

      Run mpdringtest 3000 to run a ring around the mpd daemons 

      Verify you've got the right hosts with: 

 mpiexec -n <numberofhosts> hostname 
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In Memoriam: 

Prof. Ravindra Nath Sudan, 1931-2009 

• Emigrated to the U.S. in 1958 to join the faculty 

of Cornell University in electrical engineering 

• Eventually became IBM Professor of 

Engineering 

• Director of the Laboratory of Plasma Studies 

(LPS) from 1975-85 

• Co-PI on the original proposal that created the 

Cornell Theory Center 

• Deputy director of CTC, 1985-87 

• Winner of the James Clerk Maxwell Prize from 

the American Physical Society in 1989  

• My Ph.D. thesis adviser 
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A Great Online Linux Tutorial! 

This website is beautifully elegant; succinct, yet complete.  I am in awe. 

I hereby give it its own slide as a 

tribute:http://www.ee.surrey.ac.uk/Teaching/Unix/index.html 

It consists of an intro and 8 tutorial pages.  I recommend them all. 

 

Assignment due 1/30: 

• Download the gzipped tar file from Tutorial 7 and build the code within 

it on any Linux computer by following the steps delineated in 7.2 – 7.6. 

• Run the code and email me all the output you get. 

• For input, use the numerical part of your Cornell NetID as the number 

of feet, and ask for output in meters.  Example: my NetID is srl6, so my 

input would be “6 feet”. 

• In the process, you will learn how to run configure and make! 
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Another One of My Heroes From the UK 

PuTTY is a very nice, free ssh client for Windows.  Get it! 

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html 

 

Gotta love Simon. 
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Parallel Algorithm Design 

(Foster’s Method)* 

 

* Designing and Building Parallel Programs 

Concepts and Tools for Parallel Software Engineering 

By: Ian Foster 

Copyright 1994 – Addison Wesley 
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Task/Channel Model 

• Design Efficient Parallel Programs (or Algorithms) 

– Mainly for distributed memory systems (e.g. Clusters) 

 

• Break Parallel Computations into: 

– Tasks (program solving part of a problem, memory & I/O ports) 

– Channels (message queue from one Tasks output I/O port to another’s input I/O 

port 

 

• Communication Specifics  

– Tasks receive data from other Tasks via Channels 

• Receives are synchronous (task blocks until desired message is received) 

– Tasks send data to other Tasks via Channels 

• Sends are asynchronous (messages are sent and work continues) 

– Note: This is how MPI_Send & MPI_Recv api calls work 
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Foster’s Design Methodology 

• Partitioning 

– Dividing the Problem into Tasks 

 

• Communication 

– Determine what needs to be communicated between the Tasks over Channels 

 

• Agglomeration 

– Group or Consolidate Tasks to improve efficiency or simplify the programming 

solution 

 

• Mapping 

– Assign tasks to the Computer  Processors  

• (assume distributed-memory system e.g. Cluster) 
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Illustration of the Four Steps 
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Step 1: Partitioning 
Divide Computation & Data into Pieces 

• Domain Decomposition – Data Centric Approach 

– Divide up most frequently used data 

– Associate the computations with the divided data 

 

• Functional Decomposition – Computation Centric Approach 

– Divide up the computation 

– Associate the data with the divided computations 

 

• Primitives: Resulting Pieces from either Decomposition 

– The goal is to have as many Primitives as possible 
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Domain Decomposition Example 
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Functional Parallelism Example 
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Could this be pipelined? 
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Partitioning Goals 

• Order of magnitude more Primitive tasks than Processors 

 

• Minimize redundant computations and data 

 

• Primitive tasks are approximately the same size 

 

• The number of Primitive tasks increase as problem size increases 

http://www.cornell.edu/


Steve Lantz 

Computing and Information Science 4205 

www.cac.cornell.edu/~slantz 

 
19 

Step 2: Communication 
Determine Communication Patterns between Primitive Tasks 

• Local Communication 

– When Tasks need data from a small number of other Tasks 

– Channel from Producing Task to Consuming Task Created 

 

• Global Communication 

– When Task need data from many or all other Tasks 

– Channels for this type of communication are not created during this step 
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Communication Goals 

• Communication is balanced among all Tasks 

 

• Each Task Communicates with a minimal number of neighbors 

 

• Tasks can Perform Communications concurrently 

 

• Tasks can Perform Computations concurrently 

 

Note:  Serial codes do not require communication.  When adding 

communication to parallel codes, consider this an overhead because Tasks 

cannot perform Computations while waiting for data.  If not done carefully, 

the cost of communication can outweigh the performance benefit of 

parallelism. 
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Step 3: Agglomeration 
Group Tasks to Improve Efficiency or Simplify Programming 

• Increase Locality 

– remove communication by agglomerating Tasks that Communicate with one 

another 

– Combine groups of sending & receiving task 

• Send fewer, larger messages rather than more short messages which incur more 

message latency. 

 

• Maintain Scalability of the Parallel Design 

– Be careful not to agglomerate Tasks so much that moving to a machine with 

more processors will not be possible 

 

• Reduce Software Engineering costs 

– Leveraging existing sequential code can reduce the expense of engineering a 

parallel algorithm 
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Illustration of Agglomeration 
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Agglomeration Goals 

• Increase the locality of the parallel algorithm 

 

• Replicated computations take less time than the communications they replace 

 

• Replicated data is small enough to allow the algorithm to scale 

 

• Agglomerated tasks have similar computational and communications costs 

 

• Number of Tasks can increase as the problem size does 

 

• Number of Tasks as small as possible but at least as large as the number of 
available processors 

 

• Trade-off between agglomeration and cost of modifications to sequential codes 
is reasonable 
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Step 4: Mapping 
Assigning Tasks to Processors 

• Maximize Processor 

Utilization 

– Ensure computation is 

evenly balanced across 

all processors 

 

• Minimize Interprocess 

Communication 
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Mapping Goals 

• Mapping based on one task per processor and multiple tasks per 

processor have been considered 

 

• Both static and dynamic allocation of tasks to processors have been 

evaluated 

 

• If a dynamic allocation of tasks to processors is chosen, the Task 

allocator is not a bottleneck 

 

• If Static allocation of tasks to processors is chosen, the ratio of tasks 

to processors is at least 10 to 1 
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Decision Tree for Parallel Algorithm Design 
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Foster’s Method* in Action 

 

* Designing and Building Parallel Programs 

Concepts and Tools for Parallel Software Engineering 

By: Ian Foster 

Copyright 1994 – Addison Wesley 
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Heat Transfer Problem 
Jacobi Method 

• 2 Dimensional Grid Modeling a steel plate 

• A simulated heat source is applied to one the “top” boundary 

• Simulation is run over a number of time-steps 

• For each time step, new values for each element of the grid are calculated until 
the values converge. (Jacobi Method) 

– Values for each element are based on the values of its neighbor above, below, left & right 

Heat Source Applied 

e[i][j] 

e[i][j+1] 

e[i][j-1] 

e[i-1][j] e[i+1][j] 
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Heat Transfer Problem 
Serial C Solution 1 of 4 

#include <stdio.h> 
#include <math.h> 
#define EPSILON 0.00001 
#define N 100 
#define time_steps 100 
 
int main (int argc, char *argv[]) 
 { 
  int i,j; 
  int step; 
  double time; 
  double eps, enew; 
  double time_max = 3.0; 
  double alpha = 0.06; 
  double dx = 1.0/N; 
  double dy = 1.0/time_steps; 
  double dt = time_max/time_steps; 
  double dxinv = 1.0/dx; 
  double dyinv = 1.0/dy; 
  double dtinv = 1.0/dt; 
  double divinv = 1.0/(dtinv + 2 * alpha * (dxinv * dxinv + dyinv * dyinv)); 
  double t[N][N]; 
  double told[N][N]; 
  double minval, maxval; 
  long clock(),cputime; 
  char fname[40]; 
  FILE *out; 
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Heat Transfer Problem 
Serial C Solution 2 of 4 

  clock(); 

  // initialize interior values 

  for (i=1; i<(N-1); i++) 

   for (j=1; j<(N-1); j++) 

    told[i][j] = 0.0;   

   // set initial boundary conditions 

   for (i=0; i<N; i++) 

    { 

     told[i][0]   = 0.0; // left 

     told[i][N-1] = 0.0; // right 

    } 

   for (j=0; j<N; j++) 

    told[N-1][j] = 0.0; // bottom 

  // for all time steps 

  for (step = 1; step <= time_steps; step++) 

   { 

    time = step * (time_max/time_steps); 

    // reset top boundary condition each timestep 

    for (j=0; j<N; j++) 

     told[0][j]   =  2.0 * sin(time); // top  
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Heat Transfer Problem 
Serial C Solution 3 of 4 

    do 
     { 
      eps = 0.0; 
      for (i=1; i<(N-1); i++) 
       for (j=1; j<(N-1); j++) 
        t[i][j]=((told[i][j+1]+told[i][j-1])*alpha*dyinv*dyinv+ 

(told[i+1][j]+told[i-1][j])*alpha*dxinv*dxinv+ 
(told[i][j]*dtinv))*divinv; 

      for (i=1; i<(N-1); i++) 
       { 
        for (j=1; j<(N-1); j++) 
         { 
          enew = fabs(t[i][j] - told[i][j]); 
          if (enew > eps) { eps = enew; } 
         } 
       } 
      for (i=0; i<N; i++) 
       for (j=0; j<N; j++) 
        told[i][j] = t[i][j]; 
     } 
    while(eps > EPSILON); 
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Heat Transfer Problem 
Serial C Solution 4 of 4 

    // Dump raster date to a file 
    minval = 0.0; 
    maxval = 0.0; 
    for (i=0; i<N; i++) 
     { 
      for (j=0; j<N; j++) 
       { 
        if (t[i][j] < minval) { minval = t[i][j]; } 
        if (t[i][j] > maxval) { maxval = t[i][j]; } 
       } 
     } 
    sprintf(fname,"Output\\heat%03d.raw",step);  
    out = fopen(fname,"w+b"); 
    for (i=0; i<N; i++) 
     for (j=0; j<N; j++) 
      fprintf(out,"%c",(int)(((t[i][j]-minval)*255.0)/(maxval - minval))); 
    fclose(out); 
    printf("Time step: %d\r",step); 
   } // for all time steps   
  cputime = clock(); 
  printf("%d time steps in %.2f seconds\n",step-1,cputime/1.0e+3); 
 } 
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Step 1: Partitioning 
Divide Computation & Data into Pieces 

• The Primitive task would be Computing each element in the Grid  

 

Goals: 

 Order of magnitude more Primitive tasks than Processors 

 

 Minimize redundant computations and data 

 

 Primitive tasks are approximately the same size 

 

 The number of Primitive tasks increase as problem size increases 
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Step 2: Communication 
Determine Communication Patterns between Primitive Tasks 

• Each Primitive task needs an input channel to 4 neighbors 

• Each Primitive task needs an output channel to 4 neighbors 

 

Goals: 

 Communication is balanced among all Tasks 

 

 Each Task Communicates with a minimal number of neighbors 

 

 Tasks can Perform Communications concurrently 

 

 Tasks can Perform Computations concurrently 
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Step 3: Agglomeration 
Group Tasks to Improve Efficiency or Simplify Programming 

 Increase the locality of the parallel algorithm 

 Replicated computations take less time than the communications they replace 

 Replicated data is small enough to allow the algorithm to scale 

 Agglomerated tasks have similar computational and communications costs 

 Number of Tasks can increase as the problem size does 

 Number of Tasks as small as possible but at least as large as the number of 

available processors 

 Trade-off between agglomeration and cost of modifications to sequential codes 

is reasonable 
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Step 4: Mapping 
Assigning Tasks to Processors 

 Mapping based on one task per processor and multiple tasks per processor 

have been considered 

 Both static and dynamic allocation of tasks to processors have been evaluated 

(NA) If a dynamic allocation of tasks to processors is chosen, the Task allocator is 

not a bottleneck 

 If Static allocation of tasks to processors is chosen, the ratio of tasks to 

processors is at least 10 to 1 

 

Processor 0 

Processor 1 

Processor n 

Ghost cells 

Ghost cells 
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What’s Missing? 

• The Performance Testing! 
– In 1990 this code ran on a 120 Mflop Cray XMP with a grid of 20x50 

– Today even 100 time steps with a 100x100 grid runs in ~27 seconds on 1 GHz Pentium III 

 

• Is this a problem worth parallelizing? 

– Maybe….  

– If the Grid were much bigger.  

– If the amount of computation per task increased significantly to model something more 

sophisticated. 

 

• The code certainly has good flexibility with regards to scaling. 
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Heat2D Parallel Implementation 

 Parallel C Solution 1 of 7 

#include <stdio.h> 
#include <mpi.h> 
#include <math.h> 
#define EPSILON 0.00001 
#define N 100 
#define time_steps 100 
 
int main (int argc, char *argv[]) 
 { 
  int i,j; 
  int myid, numprocs; 
  int from,to; 
  int step; 
  double time; 
  double eps, enew, global_eps; 
  double time_max = 3.0; 
  double alpha = 0.06; 
  double dx = 1.0/N; 
  double dy = 1.0/time_steps; 
  double dt = time_max/time_steps; 
  double dxinv = 1.0/dx; 
  double dyinv = 1.0/dy; 
  double dtinv = 1.0/dt; 
  double divinv = 1.0/(dtinv + 2 * alpha * (dxinv * dxinv + dyinv * dyinv)); 
 

  double **t,*tS; 
  double **told,*toldS; 
  double **tstep,*tstepS; 
  double *sendR1,*sendR2; 
  double *recvR1,*recvR2; 
  double minval, maxval; 
  long clock(),cputime; 
  char fname[40]; 
  FILE *out; 
  MPI_Status status; 
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Heat2D Parallel Implementation 

 Parallel C Solution 2 of 7 

  MPI_Init(&argc, &argv); 
  MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 
  MPI_Comm_rank(MPI_COMM_WORLD,&myid);  
   
  if (((N % numprocs) == 0) && (numprocs > 1)) 
   { 
    if (myid == 0)  
     { 
      clock(); 
      tstepS = (double *)  malloc(N * N * sizeof(double)); 
      tstep =  (double **) malloc(N * sizeof(double *)); 
 
      for (i=0; i<N; i++) 
       tstep[i] = &tstepS[i*N]; 
     } 
    //allocate enough memory for each fraction of the mesh 
    tS =    (double *)  malloc(((N/numprocs)+2) * N * sizeof(double)); 
    toldS = (double *)  malloc(((N/numprocs)+2) * N * sizeof(double)); 
    t =     (double **) malloc(((N/numprocs)+2) * sizeof(double *)); 
    told =  (double **) malloc(((N/numprocs)+2) * sizeof(double *)); 
 
    printf("rows = %d\n", (N/numprocs)+2); 
    for (i=0; i<(N/numprocs)+2; i++) 
     { 
      t[i] = &tS[i*N]; 
      told[i] = &toldS[i*N]; 
     } 
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Heat2D Parallel Implementation 

 Parallel C Solution 3 of 7 

    // set initial boundary conditions 
    for (i=0; i<(N/numprocs)+2; i++) 
     for (j=0; j<N; j++) 
      told[i][j] = 0.0; 
 
  // for all time steps 
    for (step = 1; step <= time_steps; step++) 
     { 
      time = step * (time_max/time_steps); 
      // reset top boundary condition each timestep 
      if (myid == 0)  
       for (j=0; j<N; j++) 
         told[0][j] = 2.0 * sin(time); 
      do 
       { 
        // exchange the rows you need to share with other processes 
        if (myid == 0) 
         { 
          //allocate memory for message arrays 
          sendR1 = (double *) malloc(N * sizeof(double)); 
          recvR1 = (double *) malloc(N * sizeof(double)); 
          //send to my last computed row to myid+1 
          for(j=0; j<N; j++) sendR1[j]=told[(N/numprocs)][j]; 
          MPI_Send(sendR1,N,MPI_DOUBLE,myid+1,0,MPI_COMM_WORLD); 
          //receive my last row from myid+1 
          MPI_Recv(recvR1,N,MPI_DOUBLE,myid+1,0,MPI_COMM_WORLD,&status); 
          for(j=0; j<N; j++) told[(N/numprocs)+1][j]=recvR1[j];       
          free(sendR1); 
          free(recvR1);    
         } 
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Heat2D Parallel Implementation 

 Parallel C Solution 4 of 7 

        else if ((myid > 0) && (myid < (numprocs-1))) 
         { 
          //allocate memory for message arrays 
          sendR1 = (double *) malloc(N * sizeof(double)); 
          recvR1 = (double *) malloc(N * sizeof(double)); 
          sendR2 = (double *) malloc(N * sizeof(double)); 
          recvR2 = (double *) malloc(N * sizeof(double)); 
          //send my first computed row to myid-1 
          for(j=0; j<N; j++) sendR1[j]=told[1][j]; 
          MPI_Send(sendR1,N,MPI_DOUBLE,myid-1,0,MPI_COMM_WORLD); 
          //send my last computed row to myid+1 
          for(j=0; j<N; j++) sendR2[j]=told[(N/numprocs)][j]; 
          MPI_Send(sendR2,N,MPI_DOUBLE,myid+1,0,MPI_COMM_WORLD); 
          //receive my first row from myid-1 
          MPI_Recv(recvR1,N,MPI_DOUBLE,myid-1,0,MPI_COMM_WORLD,&status); 
          for(j=0; j<N; j++) told[0][j]=recvR1[j];  
          //receive my last row from myid+1 
          MPI_Recv(recvR2,N,MPI_DOUBLE,myid+1,0,MPI_COMM_WORLD,&status); 
          for(j=0; j<N; j++) told[(N/numprocs)+1][j]=recvR2[j];  
          free(sendR1); 
          free(sendR2); 
          free(recvR1); 
          free(recvR2);  
         } 
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Heat2D Parallel Implementation 

 Parallel C Solution 5 of 7 

       if (myid == (numprocs-1)) 
         { 
          //allocate memory for message arrays 
          sendR1 = (double *) malloc(N * sizeof(double)); 
          recvR1 = (double *) malloc(N * sizeof(double)); 
          //send my first computed row myid-1 
          for(j=0; j<N; j++) sendR1[j]=told[1][j]; 
          MPI_Send(sendR1,N,MPI_DOUBLE,myid-1,0,MPI_COMM_WORLD); 
          //receive my first row myid-1 
          MPI_Recv(recvR1,N,MPI_DOUBLE,myid-1,0,MPI_COMM_WORLD,&status); 
          for(j=0; j<N; j++) told[0][j]=recvR1[j]; 
          free(sendR1); 
          free(recvR1);  
         } 
        eps = 0.0; 
        for (i=1; i<=(N/numprocs); i++) 
          for (j=1; j<(N-1); j++) 
          t[i][j]=((told[i][j+1]+told[i][j-1])*alpha*dyinv*dyinv+(told[i+1][j]+told[i-1][j])* 

alpha*dxinv*dxinv+(told[i][j]*dtinv))*divinv; 
        for (i=1; i<=(N/numprocs); i++) 
         { 
          for (j=1; j<(N-1); j++) 
           { 
            enew = fabs(t[i][j] - told[i][j]); 
            if (enew > eps) { eps = enew; } 
           } 
         } 
        for (i=0; i<((N/numprocs)+2); i++) 
         for (j=0; j<N; j++) 
          told[i][j] = t[i][j]; 
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       MPI_Allreduce(&eps,&global_eps,1,MPI_DOUBLE,MPI_MAX,MPI_COMM_WORLD); 
       } 
      while(global_eps > EPSILON); 
 
      // gather all the subsets of the grid 
      MPI_Gather(told[1],N*(N/numprocs),MPI_DOUBLE,tstepS,N*(N/numprocs),MPI_DOUBLE,0,MPI_COMM_WORLD); 
      // Produce a raster image for this time step 
      if (myid == 0) 
       { 
        minval = 0.0; 
        maxval = 0.0; 
        for (i=0; i<N; i++) 
         { 
          for (j=0; j<N; j++) 
           {    
            if (tstep[i][j] < minval) { minval = tstep[i][j]; } 
            if (tstep[i][j] > maxval) { maxval = tstep[i][j]; } 
           } 
         } 
        sprintf(fname,"Output\\heat%03d.raw",step);  
        out = fopen(fname,"w+b"); 
        for (i=0; i<N; i++) 
          for (j=0; j<N; j++) 
            fprintf(out,"%c",(int)(((tstep[i][j]-minval)*255.0)/(maxval - minval))); 
        fclose(out); 
        printf("Time step: %d\r",step); 
       } 
      MPI_Barrier(MPI_COMM_WORLD); 
     } // for all time steps  
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    free(t); 
    free(tS); 
    free(told); 
    free(toldS); 
    if (myid == 0) 
     { 
      free(tstep); 
      free(tstepS); 
      cputime = clock(); 
      printf("%d time steps in %.2f seconds\n",step-1,cputime/1.0e+3); 
     } 
    } // if ((N % numprocs) == 0))  
   else 
    if (myid == 0) 
     { 
      if (numprocs < 2) 
       printf("ERROR: Must have at least 2 processes\n"); 
      if ((N % numprocs) != 0) 
       printf("ERROR: Grid must be evenly divisible by the number of 

processes\n"); 
     } 
   MPI_Finalize(); 
 } 
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