
Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

1

Building and Running a Parallel Application

Week 2 Lecture Notes

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

Unix Trix

2

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

Unix/Linux Commands to Know and Cherish

3

• Shell: bash or tcsh

- The shell defines many of the commands you enter at the command line

- The Bourne Again Shell (bash) is an update to the original Bourne shell (sh)

- Similarly tcsh is an update to csh, the C Shell (up-arrow to get last command)

• man = “manual” = the way you get help, e.g., “man ls”

• Working with directories: cd, pwd, ls, mkdir, rmdir

- cd to change directory (popd, pushd to use directory stack); “cd ..” = up a level

- pwd = print working directory = print your current location (also known as .)

- “ls -l” gives you complete directory listing, “ls -a” lets you see .prefix-files

- mkdir to create a new directory, rmdir to remove an existing one

• Environment variables: export (bash, sh) or setenv (tcsh, csh)

- Variables that are local to the shell are defined with “set”

- Env variables are inherited by shells started in the parent shell

- Type “set” to see locals, “env” to see environment

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

Unix/Linux Commands to Know and Cherish, 2

4

• To view an environment variable: “echo $varname”

• Move, copy, remove files: mv, cp, rm

• To view the contents of a file: “cat filename”

- cat = “concatenate to standard output”, stdout is the terminal by default

• Redirect stdout using symbols

- “cat file1 > file2” replaces (clobbers) file2 with the contents of file1

- “cat file1 >> file2” appends file2 with the contents of file1

- “cmd1 | cmd2” to pipe stdout of cmd1 to stdin of cmd2

• Text editors: vi, emacs

- Terminal window becomes plain text editor

- No graphical interface, all editing done via special key sequences

• Controlling processes

- control sequences: ctrl-c = kill, ctrl-z = suspend

- bg to put process in background, fg to bring to foreground, “jobs” to see bg list

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

5

Remote Shell and Secure Shell

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

What Happens When You Run an MPI Program?

6

• Command mpiexec (mpirun in some implementations) launches

multiple processes on same or different machines

• The remote processes are launched using ssh

• All processes are copies of the same program, yet they are completely

independent processes

• mpiexec assigns a unique rank to each process, which becomes part

of that process’s environment

• A process contacts the local MPI daemon (mpd) running on each

machine in order to communicate with other MPI processes

• The mpd knows about the other processes that are part of the same

MPI job, and their ranks

• Demonstration of compiling and running helloworld.c

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

Testing Your MPI Setup

7

Start up some daemons

 mpdboot -n <numberofhosts>

If mpdboot doesn't work, here is plan B for starting the mpd daemons:

 At the command prompt, enter: mpd &

 Run mpdtrace -l to find out the port number mpd is running on

 To start mpd's on the other machines, run:

 ssh <nextmachinename> mpd -h <firstmachinename> -p <port> -d

Once all the daemons are running, see what is going on with MPICH

 Run mpdtrace to get a quick trace and hopefully see all the nodes

 Run mpdringtest 3000 to run a ring around the mpd daemons

 Verify you've got the right hosts with:

 mpiexec -n <numberofhosts> hostname

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

In Memoriam:

Prof. Ravindra Nath Sudan, 1931-2009

• Emigrated to the U.S. in 1958 to join the faculty

of Cornell University in electrical engineering

• Eventually became IBM Professor of

Engineering

• Director of the Laboratory of Plasma Studies

(LPS) from 1975-85

• Co-PI on the original proposal that created the

Cornell Theory Center

• Deputy director of CTC, 1985-87

• Winner of the James Clerk Maxwell Prize from

the American Physical Society in 1989

• My Ph.D. thesis adviser

8

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

A Great Online Linux Tutorial!

This website is beautifully elegant; succinct, yet complete. I am in awe.

I hereby give it its own slide as a

tribute:http://www.ee.surrey.ac.uk/Teaching/Unix/index.html

It consists of an intro and 8 tutorial pages. I recommend them all.

Assignment due 1/30:

• Download the gzipped tar file from Tutorial 7 and build the code within

it on any Linux computer by following the steps delineated in 7.2 – 7.6.

• Run the code and email me all the output you get.

• For input, use the numerical part of your Cornell NetID as the number

of feet, and ask for output in meters. Example: my NetID is srl6, so my

input would be “6 feet”.

• In the process, you will learn how to run configure and make!

9

http://www.cornell.edu/
http://www.ee.surrey.ac.uk/Teaching/Unix/index.html

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

Another One of My Heroes From the UK

PuTTY is a very nice, free ssh client for Windows. Get it!

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Gotta love Simon.

10

http://www.cornell.edu/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

11

Parallel Algorithm Design

(Foster’s Method)*

* Designing and Building Parallel Programs

Concepts and Tools for Parallel Software Engineering

By: Ian Foster

Copyright 1994 – Addison Wesley

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

12

Task/Channel Model

• Design Efficient Parallel Programs (or Algorithms)

– Mainly for distributed memory systems (e.g. Clusters)

• Break Parallel Computations into:

– Tasks (program solving part of a problem, memory & I/O ports)

– Channels (message queue from one Tasks output I/O port to another’s input I/O

port

• Communication Specifics

– Tasks receive data from other Tasks via Channels

• Receives are synchronous (task blocks until desired message is received)

– Tasks send data to other Tasks via Channels

• Sends are asynchronous (messages are sent and work continues)

– Note: This is how MPI_Send & MPI_Recv api calls work

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

13

Foster’s Design Methodology

• Partitioning

– Dividing the Problem into Tasks

• Communication

– Determine what needs to be communicated between the Tasks over Channels

• Agglomeration

– Group or Consolidate Tasks to improve efficiency or simplify the programming

solution

• Mapping

– Assign tasks to the Computer Processors

• (assume distributed-memory system e.g. Cluster)

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

Illustration of the Four Steps

14

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

15

Step 1: Partitioning
Divide Computation & Data into Pieces

• Domain Decomposition – Data Centric Approach

– Divide up most frequently used data

– Associate the computations with the divided data

• Functional Decomposition – Computation Centric Approach

– Divide up the computation

– Associate the data with the divided computations

• Primitives: Resulting Pieces from either Decomposition

– The goal is to have as many Primitives as possible

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

Domain Decomposition Example

16

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

Functional Parallelism Example

17

Could this be pipelined?

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

18

Partitioning Goals

• Order of magnitude more Primitive tasks than Processors

• Minimize redundant computations and data

• Primitive tasks are approximately the same size

• The number of Primitive tasks increase as problem size increases

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

19

Step 2: Communication
Determine Communication Patterns between Primitive Tasks

• Local Communication

– When Tasks need data from a small number of other Tasks

– Channel from Producing Task to Consuming Task Created

• Global Communication

– When Task need data from many or all other Tasks

– Channels for this type of communication are not created during this step

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

20

Communication Goals

• Communication is balanced among all Tasks

• Each Task Communicates with a minimal number of neighbors

• Tasks can Perform Communications concurrently

• Tasks can Perform Computations concurrently

Note: Serial codes do not require communication. When adding

communication to parallel codes, consider this an overhead because Tasks

cannot perform Computations while waiting for data. If not done carefully,

the cost of communication can outweigh the performance benefit of

parallelism.

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

21

Step 3: Agglomeration
Group Tasks to Improve Efficiency or Simplify Programming

• Increase Locality

– remove communication by agglomerating Tasks that Communicate with one

another

– Combine groups of sending & receiving task

• Send fewer, larger messages rather than more short messages which incur more

message latency.

• Maintain Scalability of the Parallel Design

– Be careful not to agglomerate Tasks so much that moving to a machine with

more processors will not be possible

• Reduce Software Engineering costs

– Leveraging existing sequential code can reduce the expense of engineering a

parallel algorithm

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

Illustration of Agglomeration

22

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

23

Agglomeration Goals

• Increase the locality of the parallel algorithm

• Replicated computations take less time than the communications they replace

• Replicated data is small enough to allow the algorithm to scale

• Agglomerated tasks have similar computational and communications costs

• Number of Tasks can increase as the problem size does

• Number of Tasks as small as possible but at least as large as the number of
available processors

• Trade-off between agglomeration and cost of modifications to sequential codes
is reasonable

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

24

Step 4: Mapping
Assigning Tasks to Processors

• Maximize Processor

Utilization

– Ensure computation is

evenly balanced across

all processors

• Minimize Interprocess

Communication

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

25

Mapping Goals

• Mapping based on one task per processor and multiple tasks per

processor have been considered

• Both static and dynamic allocation of tasks to processors have been

evaluated

• If a dynamic allocation of tasks to processors is chosen, the Task

allocator is not a bottleneck

• If Static allocation of tasks to processors is chosen, the ratio of tasks

to processors is at least 10 to 1

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

Decision Tree for Parallel Algorithm Design

26

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

27

Foster’s Method* in Action

* Designing and Building Parallel Programs

Concepts and Tools for Parallel Software Engineering

By: Ian Foster

Copyright 1994 – Addison Wesley

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

28

Heat Transfer Problem
Jacobi Method

• 2 Dimensional Grid Modeling a steel plate

• A simulated heat source is applied to one the “top” boundary

• Simulation is run over a number of time-steps

• For each time step, new values for each element of the grid are calculated until
the values converge. (Jacobi Method)

– Values for each element are based on the values of its neighbor above, below, left & right

Heat Source Applied

e[i][j]

e[i][j+1]

e[i][j-1]

e[i-1][j] e[i+1][j]

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

29

Heat Transfer Problem
Serial C Solution 1 of 4

#include <stdio.h>
#include <math.h>
#define EPSILON 0.00001
#define N 100
#define time_steps 100

int main (int argc, char *argv[])
 {
 int i,j;
 int step;
 double time;
 double eps, enew;
 double time_max = 3.0;
 double alpha = 0.06;
 double dx = 1.0/N;
 double dy = 1.0/time_steps;
 double dt = time_max/time_steps;
 double dxinv = 1.0/dx;
 double dyinv = 1.0/dy;
 double dtinv = 1.0/dt;
 double divinv = 1.0/(dtinv + 2 * alpha * (dxinv * dxinv + dyinv * dyinv));
 double t[N][N];
 double told[N][N];
 double minval, maxval;
 long clock(),cputime;
 char fname[40];
 FILE *out;

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

30

Heat Transfer Problem
Serial C Solution 2 of 4

 clock();

 // initialize interior values

 for (i=1; i<(N-1); i++)

 for (j=1; j<(N-1); j++)

 told[i][j] = 0.0;

 // set initial boundary conditions

 for (i=0; i<N; i++)

 {

 told[i][0] = 0.0; // left

 told[i][N-1] = 0.0; // right

 }

 for (j=0; j<N; j++)

 told[N-1][j] = 0.0; // bottom

 // for all time steps

 for (step = 1; step <= time_steps; step++)

 {

 time = step * (time_max/time_steps);

 // reset top boundary condition each timestep

 for (j=0; j<N; j++)

 told[0][j] = 2.0 * sin(time); // top

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

31

Heat Transfer Problem
Serial C Solution 3 of 4

 do
 {
 eps = 0.0;
 for (i=1; i<(N-1); i++)
 for (j=1; j<(N-1); j++)
 t[i][j]=((told[i][j+1]+told[i][j-1])*alpha*dyinv*dyinv+

(told[i+1][j]+told[i-1][j])*alpha*dxinv*dxinv+
(told[i][j]*dtinv))*divinv;

 for (i=1; i<(N-1); i++)
 {
 for (j=1; j<(N-1); j++)
 {
 enew = fabs(t[i][j] - told[i][j]);
 if (enew > eps) { eps = enew; }
 }
 }
 for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 told[i][j] = t[i][j];
 }
 while(eps > EPSILON);

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

32

Heat Transfer Problem
Serial C Solution 4 of 4

 // Dump raster date to a file
 minval = 0.0;
 maxval = 0.0;
 for (i=0; i<N; i++)
 {
 for (j=0; j<N; j++)
 {
 if (t[i][j] < minval) { minval = t[i][j]; }
 if (t[i][j] > maxval) { maxval = t[i][j]; }
 }
 }
 sprintf(fname,"Output\\heat%03d.raw",step);
 out = fopen(fname,"w+b");
 for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 fprintf(out,"%c",(int)(((t[i][j]-minval)*255.0)/(maxval - minval)));
 fclose(out);
 printf("Time step: %d\r",step);
 } // for all time steps
 cputime = clock();
 printf("%d time steps in %.2f seconds\n",step-1,cputime/1.0e+3);
 }

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

33

Step 1: Partitioning
Divide Computation & Data into Pieces

• The Primitive task would be Computing each element in the Grid

Goals:

 Order of magnitude more Primitive tasks than Processors

 Minimize redundant computations and data

 Primitive tasks are approximately the same size

 The number of Primitive tasks increase as problem size increases

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

34

Step 2: Communication
Determine Communication Patterns between Primitive Tasks

• Each Primitive task needs an input channel to 4 neighbors

• Each Primitive task needs an output channel to 4 neighbors

Goals:

 Communication is balanced among all Tasks

 Each Task Communicates with a minimal number of neighbors

 Tasks can Perform Communications concurrently

 Tasks can Perform Computations concurrently

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

35

Step 3: Agglomeration
Group Tasks to Improve Efficiency or Simplify Programming

 Increase the locality of the parallel algorithm

 Replicated computations take less time than the communications they replace

 Replicated data is small enough to allow the algorithm to scale

 Agglomerated tasks have similar computational and communications costs

 Number of Tasks can increase as the problem size does

 Number of Tasks as small as possible but at least as large as the number of

available processors

 Trade-off between agglomeration and cost of modifications to sequential codes

is reasonable

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

36

Step 4: Mapping
Assigning Tasks to Processors

 Mapping based on one task per processor and multiple tasks per processor

have been considered

 Both static and dynamic allocation of tasks to processors have been evaluated

(NA) If a dynamic allocation of tasks to processors is chosen, the Task allocator is

not a bottleneck

 If Static allocation of tasks to processors is chosen, the ratio of tasks to

processors is at least 10 to 1

Processor 0

Processor 1

Processor n

Ghost cells

Ghost cells

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

37

What’s Missing?

• The Performance Testing!
– In 1990 this code ran on a 120 Mflop Cray XMP with a grid of 20x50

– Today even 100 time steps with a 100x100 grid runs in ~27 seconds on 1 GHz Pentium III

• Is this a problem worth parallelizing?

– Maybe….

– If the Grid were much bigger.

– If the amount of computation per task increased significantly to model something more

sophisticated.

• The code certainly has good flexibility with regards to scaling.

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

38

Heat2D Parallel Implementation

 Parallel C Solution 1 of 7

#include <stdio.h>
#include <mpi.h>
#include <math.h>
#define EPSILON 0.00001
#define N 100
#define time_steps 100

int main (int argc, char *argv[])
 {
 int i,j;
 int myid, numprocs;
 int from,to;
 int step;
 double time;
 double eps, enew, global_eps;
 double time_max = 3.0;
 double alpha = 0.06;
 double dx = 1.0/N;
 double dy = 1.0/time_steps;
 double dt = time_max/time_steps;
 double dxinv = 1.0/dx;
 double dyinv = 1.0/dy;
 double dtinv = 1.0/dt;
 double divinv = 1.0/(dtinv + 2 * alpha * (dxinv * dxinv + dyinv * dyinv));

 double **t,*tS;
 double **told,*toldS;
 double **tstep,*tstepS;
 double *sendR1,*sendR2;
 double *recvR1,*recvR2;
 double minval, maxval;
 long clock(),cputime;
 char fname[40];
 FILE *out;
 MPI_Status status;

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

39

Heat2D Parallel Implementation

 Parallel C Solution 2 of 7

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 if (((N % numprocs) == 0) && (numprocs > 1))
 {
 if (myid == 0)
 {
 clock();
 tstepS = (double *) malloc(N * N * sizeof(double));
 tstep = (double **) malloc(N * sizeof(double *));

 for (i=0; i<N; i++)
 tstep[i] = &tstepS[i*N];
 }
 //allocate enough memory for each fraction of the mesh
 tS = (double *) malloc(((N/numprocs)+2) * N * sizeof(double));
 toldS = (double *) malloc(((N/numprocs)+2) * N * sizeof(double));
 t = (double **) malloc(((N/numprocs)+2) * sizeof(double *));
 told = (double **) malloc(((N/numprocs)+2) * sizeof(double *));

 printf("rows = %d\n", (N/numprocs)+2);
 for (i=0; i<(N/numprocs)+2; i++)
 {
 t[i] = &tS[i*N];
 told[i] = &toldS[i*N];
 }

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

40

Heat2D Parallel Implementation

 Parallel C Solution 3 of 7

 // set initial boundary conditions
 for (i=0; i<(N/numprocs)+2; i++)
 for (j=0; j<N; j++)
 told[i][j] = 0.0;

 // for all time steps
 for (step = 1; step <= time_steps; step++)
 {
 time = step * (time_max/time_steps);
 // reset top boundary condition each timestep
 if (myid == 0)
 for (j=0; j<N; j++)
 told[0][j] = 2.0 * sin(time);
 do
 {
 // exchange the rows you need to share with other processes
 if (myid == 0)
 {
 //allocate memory for message arrays
 sendR1 = (double *) malloc(N * sizeof(double));
 recvR1 = (double *) malloc(N * sizeof(double));
 //send to my last computed row to myid+1
 for(j=0; j<N; j++) sendR1[j]=told[(N/numprocs)][j];
 MPI_Send(sendR1,N,MPI_DOUBLE,myid+1,0,MPI_COMM_WORLD);
 //receive my last row from myid+1
 MPI_Recv(recvR1,N,MPI_DOUBLE,myid+1,0,MPI_COMM_WORLD,&status);
 for(j=0; j<N; j++) told[(N/numprocs)+1][j]=recvR1[j];
 free(sendR1);
 free(recvR1);
 }

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

41

Heat2D Parallel Implementation

 Parallel C Solution 4 of 7

 else if ((myid > 0) && (myid < (numprocs-1)))
 {
 //allocate memory for message arrays
 sendR1 = (double *) malloc(N * sizeof(double));
 recvR1 = (double *) malloc(N * sizeof(double));
 sendR2 = (double *) malloc(N * sizeof(double));
 recvR2 = (double *) malloc(N * sizeof(double));
 //send my first computed row to myid-1
 for(j=0; j<N; j++) sendR1[j]=told[1][j];
 MPI_Send(sendR1,N,MPI_DOUBLE,myid-1,0,MPI_COMM_WORLD);
 //send my last computed row to myid+1
 for(j=0; j<N; j++) sendR2[j]=told[(N/numprocs)][j];
 MPI_Send(sendR2,N,MPI_DOUBLE,myid+1,0,MPI_COMM_WORLD);
 //receive my first row from myid-1
 MPI_Recv(recvR1,N,MPI_DOUBLE,myid-1,0,MPI_COMM_WORLD,&status);
 for(j=0; j<N; j++) told[0][j]=recvR1[j];
 //receive my last row from myid+1
 MPI_Recv(recvR2,N,MPI_DOUBLE,myid+1,0,MPI_COMM_WORLD,&status);
 for(j=0; j<N; j++) told[(N/numprocs)+1][j]=recvR2[j];
 free(sendR1);
 free(sendR2);
 free(recvR1);
 free(recvR2);
 }

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

42

Heat2D Parallel Implementation

 Parallel C Solution 5 of 7

 if (myid == (numprocs-1))
 {
 //allocate memory for message arrays
 sendR1 = (double *) malloc(N * sizeof(double));
 recvR1 = (double *) malloc(N * sizeof(double));
 //send my first computed row myid-1
 for(j=0; j<N; j++) sendR1[j]=told[1][j];
 MPI_Send(sendR1,N,MPI_DOUBLE,myid-1,0,MPI_COMM_WORLD);
 //receive my first row myid-1
 MPI_Recv(recvR1,N,MPI_DOUBLE,myid-1,0,MPI_COMM_WORLD,&status);
 for(j=0; j<N; j++) told[0][j]=recvR1[j];
 free(sendR1);
 free(recvR1);
 }
 eps = 0.0;
 for (i=1; i<=(N/numprocs); i++)
 for (j=1; j<(N-1); j++)
 t[i][j]=((told[i][j+1]+told[i][j-1])*alpha*dyinv*dyinv+(told[i+1][j]+told[i-1][j])*

alpha*dxinv*dxinv+(told[i][j]*dtinv))*divinv;
 for (i=1; i<=(N/numprocs); i++)
 {
 for (j=1; j<(N-1); j++)
 {
 enew = fabs(t[i][j] - told[i][j]);
 if (enew > eps) { eps = enew; }
 }
 }
 for (i=0; i<((N/numprocs)+2); i++)
 for (j=0; j<N; j++)
 told[i][j] = t[i][j];

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

43

Heat2D Parallel Implementation

 Parallel C Solution 6 of 7

 MPI_Allreduce(&eps,&global_eps,1,MPI_DOUBLE,MPI_MAX,MPI_COMM_WORLD);
 }
 while(global_eps > EPSILON);

 // gather all the subsets of the grid
 MPI_Gather(told[1],N*(N/numprocs),MPI_DOUBLE,tstepS,N*(N/numprocs),MPI_DOUBLE,0,MPI_COMM_WORLD);
 // Produce a raster image for this time step
 if (myid == 0)
 {
 minval = 0.0;
 maxval = 0.0;
 for (i=0; i<N; i++)
 {
 for (j=0; j<N; j++)
 {
 if (tstep[i][j] < minval) { minval = tstep[i][j]; }
 if (tstep[i][j] > maxval) { maxval = tstep[i][j]; }
 }
 }
 sprintf(fname,"Output\\heat%03d.raw",step);
 out = fopen(fname,"w+b");
 for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 fprintf(out,"%c",(int)(((tstep[i][j]-minval)*255.0)/(maxval - minval)));
 fclose(out);
 printf("Time step: %d\r",step);
 }
 MPI_Barrier(MPI_COMM_WORLD);
 } // for all time steps

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

44

Heat2D Parallel Implementation

 Parallel C Solution 7 of 7

 free(t);
 free(tS);
 free(told);
 free(toldS);
 if (myid == 0)
 {
 free(tstep);
 free(tstepS);
 cputime = clock();
 printf("%d time steps in %.2f seconds\n",step-1,cputime/1.0e+3);
 }
 } // if ((N % numprocs) == 0))
 else
 if (myid == 0)
 {
 if (numprocs < 2)
 printf("ERROR: Must have at least 2 processes\n");
 if ((N % numprocs) != 0)
 printf("ERROR: Grid must be evenly divisible by the number of

processes\n");
 }
 MPI_Finalize();
 }

http://www.cornell.edu/

Steve Lantz

Computing and Information Science 4205

www.cac.cornell.edu/~slantz

45

Using Simple Visualization for Debugging

http://www.cornell.edu/

