Red Cloud Linux GPU PyTorch
Note
These instructions were tested 2024-02-27 using the Ubuntu 22 LTS image with the c4.t1.m20
vm flavor.
1. Launch a GPU instance
Instance configuration
- Details: Choose a name
- Source: Image:
ubuntu-22.04-LTS
, Volume Size 100GB - Flavor:
c4.t1.m20
- Networks:
<your choice>
- Security Groups:
<your choice, as appropriate>
- Key Pair:
<choose your key>
2. Set up an admin user
Create an admin account following https://cac.cornell.edu/techdocs/clusterinfo/linuxtutorial/#ubuntu, finishing with sudo apt update
and sudo apt upgrade
3. Install NVIDIA Drivers
sudo apt install libnvidia-common-535 libnvidia-gl-535 nvidia-driver-535
sudo reboot now
4. Install Miniconda
Miniconda — Conda documentation
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh
#with ~/miniconda3 as install location
source ~/.bashrc
5. Create a conda environment
Add any other packages you might need to the mamba install ....
line. Minimally, you need python, pip and pytorch. At the time of this writing, mamba selected python 3.11 over 3.12. You can try leaving the python version unconstrained and see what mamba selects. Be sure you are getting a CUDA enabled version of pytorch.
conda config --set channel_priority strict
conda create --name cforge
conda activate cforge
conda config --add channels conda-forge
conda config --env --set channel_priority strict
conda install mamba
mamba install python=3.11 pip pandas matplotlib jupyterlab nodejs tqdm regex ipywidgets jupytext pytorch